LOAN DOCUMENT | | PHOTOGRAPH THE | SHEET | |---|--|-------------------------------------| | | | | | 3 | | | | NOMB | LEVEL | INVENTORY | | NOISS | | | | DTIC ACCESSION NUMBER | DOCUMENT IDENTIFICATION | | | DTIC | DOCUMENT DESTRICTION | | | | | A | | · | | I | | | | | | | DISTRIBUT | ION STATEMENT | | NTIS GRAM DITC TRAC | 7 | | | UNANNOUNCED JUSTIFICATION | | | | | | | | У | = | | | DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIA | N. | | | | 7 | DATE ACCESSIONED | | A-1 | | | | | | , A | | DISTRIBUTION STAMP | | | | | Reproduced From | | | | Best Available Copy | DATE RETURNED | | · . | 7 | | | 1998 | 1223 016 | | | 1770 | 122 010 | | | D.A. TO DO | OTHER IN PARC | REGISTERED OR CERTIFIED NUMBER | | DATE RE | CEIVED IN DTIC | residibred on Certified Rumber | | | PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-F | DAC | | TIC FORM 70A | DOCUMENT PROCESSING SHEET | PREVIOUS EDITIONS MAY BE USED UNTIL | NADC Tech. Info. # AN/AMT-22 METEOROLOGICAL DROPSONDE AND RDSRU (REFRACTIVE DROPSONDE SIGNAL RECORDING UNIT) PROCESSOR ENGINEERING FIELD TEST RESULTS John S. Sniscak Sensors and Avionics Technology Directorate NAVAL AIR DEVELOPMENT CENTER Warminster, Pennsylvania 18974 ## 7 DECEMBER 1979 PHASE REPORT AIRTASK NO. A370370C/001B/9F52-550-000 Task Area No. W05140000 Work Unit No. RB302 Prepared for Public Release; DISTRIBUTION UNLIMITED Prepared for NAVAL AIR SYSTEMS COMMAND Department of the Navy Washington, D. C. 20361 ## NOTICES REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteeth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows: | CODE | OFFICE OR DIRECTORATE | |------|---| | 00 | Commander, Naval Air Development Center | | 01 | Technical Director, Naval Air Development Center | | 02 | Comptroller | | 10 | Directorate Command Projects | | 20 | Systems Directorate | | 30 | Sensors & Avionics Technology Directorate | | 40 | Communication & Navigation Technology Directorate | | 50 | Software Computer Directorate | | 60 | Aircraft & Crew Systems Technology Directorate | | 70 | Planning Assessment Resources | | 80 | Engineering Support Group | | | | PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products. APPROVED BY: DATE. E: //k | REPORT DOCUMENTATION PAGE | | READ INSTRUCTIONS BEFORE COMPLETING FORM | |--|--|--| | 1. REPORT NUMBER | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER | | NADC-79194-30 | | | | 4. TITLE (and Subtitle) | | 5. TYPE OF REPORT & PERIOD COVERED | | AN/AMT-22 Meteorological Dropsonde | | DT-2 (Development Testing) | | (Refractive Dropsonde Signal Record | | Phase Report; CY 1978 | | Processor Engineering Field Test Re | _ | 6. PERFORMING ORG, REPORT NUMBER | | 7. AUTHOR(s) | | 8. CONTRACT OR GRANT NUMBER(#) | | John S. Sniscak | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | (00//) | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | Sensors and Avionics Technology Dir | rectorate (3044) | A370370C/001B/9F52-550-000; | | Mayar wir peacrobment center | | W05140000; RB302 | | Warminster, PA 18974 | | • | | 11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command (AIR-370) | ا و | 12. REPORT DATE | | Department of the Navy | :) | 7 December 1979 | | Washington, DC 20360 | ! | 149 | | 14. MONITORING AGENCY NAME & ADDRESS(II ditierent | from Controlling Office) | 15. SECURITY CLASS. (of this report) | | | | | | | | Unclassified | | | | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE | | 16. DISTRIBUTION STATEMENT (of this Report) | | | | Approved for Public Release; distri | ibution unlimite | đ | | 17. DISTRIBUTION STATEMENT (of the abstract entered in | n Block 20, if different from | m Report) | | | • | | | | | | | 18. SUPPLEMENTARY NOTES | | | | | | | | | • | | | | | | | 19. KEY WORDS (Continue on reverse side if necessary and | i identify by block number) | and the second s | | | • | | | | | | | , | | | | | | | | 20. ABSTRACT (Continue on reverse side if necessary and | identify by block number) | | | This technical report documents law that have been acquired and evaluate opment (DT-2) phase of the AN/AMT-2 processing data results obtained for description of the dropsonde and | boratory and eng
ted in 1978, dur
22 dropsonde sys
rom the dropsond
he RDSRU is also | ting the evolutionary devel-
tem. This report documents
te RDSRU processor. A system
provided. Appendix A | | details the meteorological algorith | .ims dillized for | the data processing. | | SECURITY CLASSIFICATION OF | THIS PAGE (When Data Er | ntered) | | | |----------------------------|-------------------------|---------|---|--| | | | | • | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | • | • | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | • | - | • | | | | | | | | | | | | | |
 | | | | | | | | • | • | | | | | | | | | | | | , | | | | | | | | | | | | • | | | • | | | | | | | | | | | ## SUMMARY ## 1. Introduction/Background As part of AIRTASK A370370C/001B/9F52-550-000, this command is tasked by NAVAIR to develop the AN/AMT-22 dropsonde system and to evaluate its performance through an extensive TECHEVAL program. The dropsonde sensor, which is capable of measuring meteorological data, is being developed by JMR Systems Corporation, Salem, New Hampshire. The dropsonde program was initiated in June 1976 and TECHEVAL is scheduled to commence in September 1979. The principal use of the dropsonde data at present will be within the IREPS (Index of Refraction Effects Prediction System) for propagation analysis. However, it is also anticipated that the dropsonde will be used by P-3C and S-3A aircraft as a vital aid to their ASW (Antisubmarine Warfare) missions and to their survivability requirements. In addition, potential modifications to the dropsonde, including wind-sensing capability and integration with the AN/SSQ-36 airborne expendable bathythermograph (AXBT) sensor will provide the Navy with a consolidated, improved ASW environmental sensor capability. The processor function of the dropsonde system, the RDSRU (Refractive Dropsonde Signal Recording Unit) processor, was developed by Bendix Corporation, Baltimore, Maryland, during the period July 1976 to June 1977 and was tested and accepted by NAVAIRDEVCEN. Bendix was also tasked to develop a modified version of the RDSRU, namely the RASP (Refraction Anomalies Signal Processor), to implement the current dropsonde modification of replacing the baroswitch pressure sensor with the CAPS (Continuous Analog Pressure Sensor). Delivery date of the RASP was slated for 30 September 1979. This DT-2 (Development Testing) report documents laboratory and field test results that have been acquired and evaluated during the evolutionary development of the dropsonde system design. The ultimate goal of this phase is to demonstrate that design risks have been identified and minimized; that the engineering, design, and development process is complete; and that the performance of the dropsonde system will meet the required specifications. ## 2. Summary of Results Four major field tests were conducted in 1978 to verify the overall dropsonde design. Mechanical tests at Warren Grove (New Jersey) in July and at Lakehurst (New Jersey) in September were held to verify the dropsonde deployment mechanism (without any "live" electronics). To prove the adequacy of the transmitted dropsonde signal, field tests were conducted at Key West (Florida) in February and at Cape Hatteras (North Carolina) in September. In addition, laboratory and antenna range tests were performed at NAVAIRDEVCEN in August to improve the tuning procedure of the transmitter board and to refine the antenna design. - a. The received dropsonde signal during the Key West test was noisy, erratic, and marginal in S/N (Signal-to-Noise) ratio. Of the nine sondes launched, four had inoperable thermistors and one generated a very noisy hygristor signal. Due to the poor quality of the incoming signal, the RDSRU processor was unable to process any data during the flights. Only the first launch was capable of being processed subsequently in the laboratory, using a more elaborate processing setup. Mechanically, five of the nine launches had no deployment problems, three experienced premature drogue chute separations from the sonde housing, and the remaining launch encountered a late deployment of the air tab and the drogue chute. Several mechanical and electrical modifications were implemented into the dropsonde design as a result of the failures incurred during this test. - b. At the Warren Grove test, five of the nine launched units experienced no deployment problems. All three of the sondes launched at the maximum aircraft speed (330 km) encountered failures. Out of the six sondes dropped at velocities of 250 km or less, only one failure occurred. All of the failures were related to one or more of the following areas: (1) rough finished or improperly polished parts in the timer mechanism, (2) marginal design tolerances in the timer release hardware, and (3) marginal drogue and main parachute shroud line strength at the upper end of the launch envelope. From the results of this test, several design modifications to the timer mechanism were made and the need for another deployment-related drop test was dictated. - c. From the results of the nine sondes launched during the Lakehurst deployment test, it was concluded that the dropsonde design was satisfactory at aircraft speeds up to 300 km at 1,000 feet of altitude, a severe point on the sonobuoy launch envelope. One failure occurred out of four sondes launched at velocities of 300 km or less and three failures occurred out of five dropsondes launched at speeds of 325 km or greater. The two main causes of the deployment failures were in the areas of improper timer mechanism release and fraying of the 500 pound test line. Several design modifications were implemented to the timer mechanism to correct these problems. - d. Laboratory and antenna range tests conducted at NAVAIRDEVCEN indicated deficiencies in the antenna-transmitter subsystem of the dropsonde. An improved simplified transmitter board tuning procedure was developed that utilized a maximum power, rather than minimum current, technique. Refinements in the antenna design, specifically a modification of its actual dimensions and the establishment of an improved grounding point, were also developed. - e. The Cape Hatteras test successfully verified the integrity and RF strength of the transmitted dropsonde signal. The entire five sonde launches were very satisfactory in the areas of deployment and RF and data transmission and reception. However, the RDSRU processor only produced one satisfactory data run during the flight. With the use of the NAVAIRDEVCEN laboratory processing scheme, the data from all five launches were subsequently processed successfully. The data agreed very well with the corresponding National Weather Service rawindsonde data, except for an offset in humidity in several instances. A satisfactory data run of the final drop, utilizing the RDSRU, was also conducted in the laboratory. The resulting atmospheric data outputs matched those generated by the more elaborate NAVAIRDEVCEN processing scheme. However, several shortcomings in the RDSRU processor were identified, specifically the need for data validation, noise rejection, and data averaging capabilities. ## 3. Conclusions The engineering, design, and development process for the dropsonde has been satisfactorily completed, except for the current effort of replacing the baroswitch pressure sensor with that of the CAPS sensor. From the results of four major tests conducted during 1978, many mechanical and electrical improvements were implemented into the dropsonde design. The successful results of the final deployment and electrical tests (at Lakehurst and Cape Hatteras, respectively) demonstrate that design risks have been identified and minimized and that the performance of the dropsonde system will meet the required specifications. #### 4. Recommendations Based on the successful outcome of the Lakehurst deployment and Cape Hatteras electrical tests, it appears that the dropsonde design problems have been identified, corrected, and minimized. As a result, it is recommended that the dropsonde system advance into the TECHEVAL phase of the program. ## TABLE OF CONTENTS | | | | Page | |-------|-------------------|--|----------------------------| | SUMMA | ARY | | 1 | | | 3. | Introduction/Background Summary of Results Conclusions Recommendations | 1
2
5
5 | | LIST | OF F | IGURES | 9 | | LIST | OF T | ABLES | 11 | | 1. | INTR | ODUCTION | 13 | | 2. | SYST | EM DESCRIPTION | 13 | | | 2.2 | Dropsonde Sensor
Dropsonde Processor
RASP Processor Output Data Formats and Users | 14
16
18 | | 3. | KEY | WEST DROPSONDE TEST | 21 | | | 3.2
3.3
3.4 | Objective Test Setup Laboratory Data Processing Test Results Conclusions and Recommendations | 21
21
22
26
29 | | 4. | WARR | EN GROVE DROPSONDE TEST | 31 | | | 4.2
4.3 | Objective Test Setup Test Results Conclusions and Recommendations | 31
32
33
35 | | 5. | LAKE | HURST DROPSONDE TEST | 36 | | | 5.2
5.3 | Objective Test Setup Test Results Conclusions and Recommendations | 36
36
37
39 | # TABLE OF CONTENTS (cont) | | | | Page | |------|--------|---|------| | 6. | CAPE | HATTERAS DROPSONDE TEST | 40 | | | | Objective | 40 | | | | Test Setup | 40 | | | | Test Results | 42 | | | | Laboratory Data Processing | 46 | | | | Bendix RDSRU Data Processing | 48 | | | 6.6 | Conclusions and Recommendations | 51 | | 7. | OVERA | ALL PROGRAM CONCLUSIONS AND RECOMMENDATIONS | 54 | | REFE | RENCES | S/BIBLIOGRAPHY | 55 | | APPE | NDIX | | A-1 | | | A | Summary of User Algorithms | A-1 | | | | A.1 Altitude | A-1 | | | | A.2 Temperature | A-2 | | | | A.3 Humidity | A-5 | | | | A.4 Refractivity: M and N Units | A-8 | # LIST OF FIGURES | Figure | Title | Page | |--------|--|----------| | 1
2 | NAVAIRDEVCEN Laboratory Data Processing Scheme
NAVAIRDEVCEN Processed Meteorological Data for | 56 | | | Sonde No. 1 at Key West | 57 | | 3 | Key West Rawindsonde Meteorological Data | 58 | | 4 | Temperature Data Comparison of Rawindsonde and Sonde No. 1 at Key West | 59 | | 5 | Humidity Data Comparison of Rawindsonde and Sonde
No. 1 at Key West | | | 6 | M-Units Data Comparison of Rawindsonde and Sonde | 60 | | 7 | No. 1 at Key West
Expanded M-Units Data Comparison of Rawindsonde and |
61 | | 8 | Sonde No. 1 at Key West
N-Units Data Comparison of Rawindsonde and Sonde | 62 | | | No. 1 at Key West | 63 | | 9 | Received Audio Signal from Key West Sonde No. 1 | 64 | | 10 | Expanded View of Audio Signal from Key West Sonde
No. 1 | 64 | | 11 | Commutation of Two Successive Data Samples from Key West Sonde No. 1 | 65 | | 12 | Defective Audio Signal Data from Key West Sonde No. 3 | | | 13 | Noise Spikes in Hygristor Signal of Key West Sonde No. 3 | 66
66 | | 14 | Missing Thermistor Signal in Key West Sonde No. 4 | 67 | | 15 | Expanded View of Missing Thermistor Signal from Key West Sonde No. 4 | | | 16 | · · · · · · · · · · · · · · · · · · · | 67 | | 17 | Air Tab Release from Dropsonde Housing | 68 | | 18 | Full Deployment of Drogue Parachute Separation of Main Parachute from Timer Mechanism | 68 | | 19 | Full Deployment of Main Parachute | 69 | | 20 | Vertical Dropsonde Descent | 69
70 | | 21 | Dropsonde Descent at Ground Impact | 70
70 | | 22 | Proposed P-3C Dropsonde Processing Configuration | 70
71 | | 23 | Dropsonde Signal Ringing Phenomena at Cape Hatteras | 72 | | 24 | Comparative View of Signal Ringing | 72 | | 25 | Sinusoidal Nature of Received Sonde Signal | 73 | | 26 | Typical Data Parameter Commutation | 73 | | 27 | NAVAIRDEVCEN Processed Meteorological Data for
Sonde No. 11 | | | 28 | NAVAIRDEVCEN Processed Meteorological Data for | 74 | | 20 | Sonde No. 12 | 75 | | 29 | NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 13 | 76 | | 30 | NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 14 | 77 | # LIST OF FIGURES (cont) | Figure | Title | Page | |--------|--|------| | 31 . | NAVAIRDEVCEN Processed Meteorological Data for | | | | Sonde No. 15 | 78 | | 32 | Meteorological Data from Rawindsonde No. 1 | 79 | | 33 | Meteorological Data from Rawindsonde No. 2 | 80 | | 34 | Temperature Data Comparison of Rawindsonde No. 1 and Sonde No. 11 | 81 | | 35 | Humidity Data Comparison of Rawindsonde No. 1 and Sonde No. 11 | 82 | | 36 | M-Units Data Comparison of Rawindsonde No. 1 and Sonde No. 11 | 83 | | 37 | Expanded M-Units Data Comparison of Rawindsonde No. 1 and Sonde No. 11 | 84 | | 38 | N-Units Data Comparison of Rawindsonde No. 1 and Sonde No. 11 | 85 | | 39 | Temperature Data Comparison of Rawindsonde No. 2 and Sonde No. 15 | 86 | | 40 | Humidity Data Comparison of Rawindsonde No. 2 | 87 | | 41 | and Sonde No. 15 M-Units Data Comparison of Rawindsonde No. 2 and | 88 | | 42 | Sonde No. 15 Expanded M-Units Data Comparison of Rawindsonde | 89 | | 4.3 | No. 2 and Sonde No. 15
N-Units Data Comparison of Rawindsonde No. 2 and | 09 | | 43 | Sonde No. 15 | 90 | | 44 | Meteorological Data for Sonde No. 15 Using Period
Data Generated by Bendix RDSRU in P-3C and
NAVAIRDEVCEN Algorithms | 91 | | 45 | Meteorological Data for Sonde No. 15 Using Bendix
RDSRU Laboratory Generated Period Data and | ,_ | | | NAVAIRDEVCEN Algorithms | 92 | | 46 | Temperature Comparison of Bendix RDSRU Laboratory Data (Figure 45) and NAVAIRDEVCEN Processed Data | | | | (Figure 31) for Sonde No. 15 | 93 | | 47 | Humidity Comparison of Bendix RDSRU Laboratory | | | | Data (Figure 45) and NAVAIRDEVCEN Processed Data | 0.4 | | | (Figure 31) for Sonde No. 15 | 94 | | 48 | M-Units Comparison of Bendix RDSRU Laboratory Data | | | | (Figure 45) and NAVAIRDEVCEN Processed Data (Figure 31) for Sonde No. 15 | 95 | | 49 | Expanded M-Units Comparison of Bendix RDSRU | | | 43 | Laboratory Data (Figure 45) and NAVAIRDEVCEN | | | | Processed Data (Figure 31) for Sonde No. 15 | 96 | | 50 | N-Units Comparison of Bendix RDSRU Laboratory | | | _ | Data (Figure 45) and NAVAIRDEVCEN Processed Data | | | | (Figure 31) for Sonde No. 15 | 97 | | 51 | Humidity Resistance Network in Dropsonde Electronics | 98 | # LIST OF TABLES | Table | Title | Page | |--------------------|---|------------| | I | Key West Dropsonde Identification and Launch Information | 99 | | II
III | Key West Dropsonde Deployment Information Sample of Laboratory-Measured Period Data for | 100 | | | Sonde No. 1 | 101 | | IV | 4051 Microcomputer Listing of Averaged Period Values for Sonde No. 1 | 102 | | V (a), (b) | Key West Dropsonde Deployment and Signal
Reception Results | 103 | | VI. | NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 1 at Key West | 105 | | VII
VIII | Key West Rawindsonde Meteorological Data
Dropsonde Design Modifications Recommended from | 106 | | IX (a), (b), | Key West Test Results Warren Grove Deployment and Recovery Results | 107
109 | | and (c) | | | | X | Dropsonde Design Modifications Recommended from Warren Grove Test Results | 112 | | XI (a), (b)
XII | Lakehurst Deployment and Recovery Results Lakehurst Deployment Timing Events | 113
115 | | XIII | Timer Mechanism Design Modifications Recommended from Lakehurst Test Results | 116 | | XIV | Cape Hatteras Launch Conditions and Deployment
Times | 117 | | XV | Miscellaneous Cape Hatteras Dropsonde and Launch
Information | 118 | | XVI | P-3C Meteorological Data Output from Bendix RDSRU for Sonde No. 15 | 119 | | XVII | RDSRU Generated Period Values Aboard P-3C for Sonde No. 15 | 120 | | XVIII | RDSRU Refractivity Layer Data Output Aboard P-3C | 121 | | XIX | for Sonde No. 15 Typical Prelaunch RDSRU Input Data | 122 | | XX | NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 11 | 123 | | XXI | NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 12 | 124 | | XXII | NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 13 | 125 | | XXIII | NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 14 | 126 | | XXIV | NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 15 | 127 | | XXV | Meteorological Data from Cape Hatteras
Rawindsonde No. 1 | 128 | # LIST OF TABLES (cont) | Table | Title | Page | |--------|--|------| | XXVI | Meteorological Data from Cape Hatteras | 120 | | ****** | Rawindsonde No. 2 | 129 | | XXVII | Cape Hatteras Wind Information from Rawindsonde No. 1 (11:00:00 EDT) | 130 | | XXVIII | Cape Hatteras Wind Information from Rawindsonde No. 2 (13:00:00 EDT) | 131 | | XXIX | Meteorological Data for Sonde No. 15 Using Period Data Generated by Bendix RDSRU in P-3C | | | | and NAVAIRDEVCEN Algorithms | 132 | | XXX | Meteorological Data Output for Sonde No. 15 | | | | Generated by Bendix RDSRU in Laboratory | 133 | | XXXI | Refractivity Layer Data Output for Sonde No. 15 | | | | Generated by Bendix RDSRU in Laboratory | 134 | | XXXII | Period Data Output for Sonde No. 15 Generated | | | | by Bendix RDSRU in Laboratory | 135 | | XXXIII | Comparison of Meteorological Data Generated | | | | by RDSRU in Laboratory with Meteorological | | | | Data Generated Solely by NAVAIRDEVCEN Processing | | | | Scheme | 136 | | XXXIV | Meteorological Data for Sonde No. 15 Using | | | | Bendix RDSRU Laboratory Generated Period Data | | | | and NAVAIRDEVCEN Algorithms | 138 | ## 1. INTRODUCTION The main text of this technical report is divided into six major sections. The first section will present a detailed description of the dropsonde sensor, dropsonde processor, and the processor output data formats, including anticipated users. The next four sections will separately describe each of the four major field tests conducted during FY78; i.e., tests at Key West, Florida; Warren Grove, New Jersey; Lakehurst, New Jersey; and Cape Hatteras, North Carolina. Included in each field test section is a test objective, test setup, test results, conclusions, and recommendations, including corrective design changes. The last major section will relate final conclusions and recommendations based on the results of the four major tests. The intent of this format is to provide a chronological sequence of test results, conclusions, and recommendations. ## 2. SYSTEM DESCRIPTION The dropsonde system under development consists of a sensor and a processor. The intent is to utilize the dropsonde system with currently used ASW aircraft receivers, much in the same manner as a sonobuoy and its processor. The dropsonde sensor, processor, and applications for dropsonde-acquired meteorological data will be detailed in the following three sections. ## 2.1 Dropsonde Sensor The AN/AMT-22 dropsonde sensor is capable of measuring atmospheric pressure, temperature, and humidity parameters to altitudes of 30,000 feet. The dropsonde is contained within the form factor of an "A"-size sonobuoy (4.875 in. diameter x 36 in. length cylinder). As a result, the sensor can be loaded aboard and CAD (Cartridge Actuated Device) launched from ASW aircraft in the identical manner as sonobuoys. The weight of the dropsonde sensor is 11 pounds. After launch the dropsonde is retarded in the airstream by a twostage parachute system that is initiated by a wind flap mechanism. First, a drogue parachute is deployed to decelerate the dropsonde. Within 6 seconds, the timing out of a timer mechanism causes the release of the drogue chute from the sonde and the deployment of the main parachute, a 4-foot diameter ribless guide type. Thus, once deployed into the airstream, the sensor orients and stabilizes within 6 seconds, while descending at a rate of 1700 ft/min. The deployment sequence is illustrated in figures 16 through 21 in section 5 of this report. The current version of the dropsonde utilizes a baroswitch device that contains resistive pressure contacts for discrete atmospheric pressure measurements. With the baroswitch the data commutation rate is 400 ms/cycle, yielding a data profile resolution of 12 feet. Each cycle consists of four 100 ms parameters in the following order: (1) reference frequency, (2) atmospheric temperature, (3) atmospheric pressure, and (4) atmospheric
humidity. The reference signal is approximately 2500 Hz and the other data information ranges in frequency from 225 to 2250 Hz. The commutation signal, a "rounded" square wave of 50 +5% duty cycle, is generated by a commutator-oscillator network, which converts the individual sensor resistive values to first, corresponding voltages and then, to the proper frequencies. The temperature and humidity sensors utilized are a VIZ rod thermistor (-65° C to + 50° C, ± 0.5 ° C) and a VIZ carbon hygristor (0% to 100%, ±5% relative humidity), respectively. An ongoing development effort will replace the current baroswitch with a Honeywell CAPS sensor, the output of which will vary smoothly and continuously over a range of 1050 to 10 millibars with an accuracy of +2 mb. This modification in the pressure-measuring device will change the commutation rate from 400 to 800 ms/cycle with eight 100 ms parameters in the following order: (1) reference frequency, (2) atmospheric temperature, (3) pressure, (4) humidity, (5) temperature of the CAPS sensor, which is a parameter used in the pressure algorithm, (6) atmospheric temperature, (7) pressure, and (8) humidity. The sensor data are multiplexed into the LOFAR (Low Frequency Analysis and Recording) sonobuoy acoustic passband and telemetered to the aircraft on one of three VHF sonobuoy channels (channels 12, 14, and 16) used by the AXBT (Aircraft Expendable Bathythermograph) sonobuoy. This format enables the present avionics aboard ASW aircraft to receive this data and record it on magnetic tape units normally used for acoustic data from sonobuoys. The VHF frequencies are generated by an SSQ-41A transmitter board located within the dropsonde and have a nominal power output of 1 watt. The power source for the transmitter and commutation electronics is a 6-cell, 22.5 volt lithium (SO₂) battery having a nominal operating life of 120 minutes. ## 2.2 Dropsonde Processor The current dropsonde processing scheme, which consists of an RDSRU processor and an Axiom EX-800 electrosensitive printer, is capable of near real-time processing of dropsonde meterological data. The processor is designed to condition, decommutate, and digitize dropsonde data that is inputted from the ASW receiver. Through algorithms in its software package, the RDSRU will then convert the digitized data to engineering units as meteorological and refractivity data, select significant values, and display the output on the printer. Tables XVI, XVII, and XVIII of section 6 are examples of typical RDSRU output data. In table XVI the RDSRU-calculated values of pressure, temperature, humidity, and M and N engineering units are displayed as a function of calculated altitude, along with launch conditions and the estimated surface pressure. In table XVII the period values of reference frequency, temperature, pressure, and humidity are depicted as a function of processor time. Lastly, ducting effects, including pertinent altitudes and engineering units, that are output by the RDSRU are illustrated in table XVIII. Four PC boards are located within the RDSRU to process the data: (1) input signal conditioning board that contains a data buffer, a 10 Hz decommutation detector and PLL (Phase-Locked Loop), a counter that gates each data parameter for a 10-period window, and a digitizer that converts each data frequency to a 16-bit word, (2) SBC 80/10 board that serves as a CPU (Central Processing Unit), (3) 16 K byte RAM (Random Access Memory) board, and (4) 16 K byte EPROM (Eraseable Programmable Read Only Memory) board that contains the software package with the appropriate meteorological and refractivity algorithms. The front panel of the RDSRU contains the following items: (1) power off-on switch, (2) power on, system fault, system busy, and data received LED lights, (3) BNC input connections for processing both receiver data and tape recorder data, and (4) a numeric keyboard for prelaunch entering of baroswitch calibration data, thermistor and hygristor lock-in resistance values, and launch conditions, such as drop altitude, latitude, longitude, and date. A reference to table XIX of section 6 will illustrate a typical RDSRU display of prelaunch input data. The RDSRU can be powered either with a 115 VAC, 60 or 400 Hz external source or a self-contained battery. The weight of the RDSRU is approximately 55 pounds and its dimensions are 18 in. in length, 11 in. in width, and 14 in. in height. The RDSRU is a unique piece of hardware with no production anticipated. An ongoing development effort is being conducted to replace the RDSRU with the RASP processor, which will be an updated version of the RDSRU with the capability of processing continuous pressure data supplied by the CAPS sensor. Figure 22 of section 6 is a block diagram of the proposed P-3C dropsonde processing configuration. The new printer to be utilized with the RASP will be a Miltope TP2000 model, a ruggedized, high-speed, 40 column thermal printer. ## 2.3 RASP Processor Output Data Formats and Users A total of four data output formats will be provided by the RASP processor in a 40 character-wide printout. These output formats include: (1) duct report to the aircrew, (2) refractivity profile report, (3) meteorological profile report with mandatory and significant levels, and (4) raw data dump output. An operation manual for utilization of this data will be forthcoming. The duct report to the aircrew is mandatory and not operator selectable. Basically, the report describes any present real-time refractive layers, including the pressure altitudes (in feet) at the top and the bottom of the duct and the strength of the duct (in M engineering units). The printout will also indicate date, time, latitude, longitude, and sonde type and serial number. The duct report is required by the PPC (Patrol Plane Commander) for avoidance of radar detection of the aircraft and its special ordnance, since the presence of and location of ducts, caused by certain atmospheric conditions, determine the effects on the propagation of electromagnetic radiation. The real-time duct information can be compared on site with the mission environment prediction received prior to flight and adjustments and refinements in the mission plan can be made when required. In addition, a message can be transmitted back to the meteorological center or TSC (Tactical Support Center) indicating differences between the predicted information and the on site measurements, for near-future flight plans. The second report, the refractivity profile, is also mandatory and not operator selectable. The refractivity information reported is available within minutes after the cessation of sonde telemetered data and includes significant refractivity points (in M-units), the corresponding pressure altitudes (in feet) and geopotential altitudes (in meters), and the pertinent header information described previously. This refractivity information will be used as an input to the IREPS system to develop tactical mission plans through propagation analysis, especially in the generation of radar coverage plots. Further detailed information concerning the IREPS system and basic refractive effects theory can be obtained in reference (a). The number of significant data points generated in this report is limited to 29 for compatibility with the IREPS input format and the altitudes are listed in ascending order. An RS232C interface will be used between the RASP and IREPS units and special precautions are currently being made to modify the IREPS software for compatibility with the RASP output formats. The meteorological profile report, which is also mandatory (not operator selectable), contains the necessary data for WMO (World Meteorological Organization) format weather reporting. These data collectively form the input to a local weather prediction by the meteorological unit aboard carriers and land-based Naval weather stations. The meteorological data reported by the processor consists of mandatory levels of pressure (mb), altitude (meters), temperature (°C), and dew point depression (°C) and significant levels of pressure (mb), temperature (°C), and dew point depression (°C). This meteorological report can also be utilized to provide FNWC (Fleet Numerical Weather Central) with data to facilitate global weather assessments and to provide the research and development community with archival data. Lastly, this meteorological printout indicates to the aircrew that the processor is functioning properly in the absence of a duct report if no refractive anomalies are present. The fourth (and last) report is an optional data dump necessary for developmental and debugging purposes. The data printed out consists of period values of the eight parameters (reference frequency, free air temperature, pressure, humidity, CAPS temperature, free air temperature, pressure, and humidity), along with processor time, at each of the mandatory and significant points listed in the meteorological profile report. Thus, this data dump will serve as a backup to check any unusual atmospheric or refractive points listed in the meteorological profile report. 3. KEY WEST DROPSONDE TEST (16-17 February 1978) ## 3.1 Objective The objective of this test was of a threefold nature: (1) to verify the deployment operations of the dropsonde, (2) to determine the RF strength and the integrity of the transmitted dropsonde signal, and (3) to employ near real-time data reduction of this signal, utilizing a Bendix RDSRU (Refractive Dropsonde Signal Recording Unit) processor. ## 3.2 Test Setup The test consisted of CAD launching nine electrically active dropsondes in sonobuoy launch containers from a Navy P-3C aircraft. All of the sondes that were launched were manufactured by the principal contractor, JMR Systems Inc. However, three of the sondes were modified to include the Honeywell, Inc. CAPS (Continuous Analog Pressure Sensor) and its associated electronics package for design
verification purposes. The test format consisted of launching the sondes, one at a time, from the P-3C aircraft at altitudes slightly below 12,500 feet and at aircraft speeds of 250 km. However, because the drogue chute separated from the sonde on two of the four launches on the first test day, it was decided to reduce the aircraft speed to 190 km for the final day of testing. Additional information related to the dropsondes and the launches is given in tables I and II. The tasks onboard the aircraft (P-3C No. 158928) consisted of recording the dropsonde data with a 28-track wideband AQH-() tape recorder, monitoring the signal levels with an oscilloscope and an ARR-72 receiver signal strength meter, and taking photographs of the incoming signal from the oscilloscope display. Pressure calibration data and other parameters were also input into the RDSRU processor between drops. The dropsonde deployments were photographed through the utilization of a high-speed (200 frames/s) camera mounted on wing station 13. Prior to the actual drops at Key West, extensive laboratory tests were conducted at NAVAIRDEVCEN to determine whether all of the sondes met the specification requirements. Tests that were performed included verifying the commutation rate, sensor resistance values, oscillator performance, and RF performance, including frequency, power output, and deviation. Calibration of all of the baroswitches was also accomplished. In addition an arrangement was made with the Key West Weather Service Station to launch a rawindsonde on each test day during the launches for data comparison purposes. ## 3.3 Laboratory Data Processing The laboratory data processing scheme is illustrated in block diagram form in figure 1. The aircraft 28-track tape recorded dropsonde data are processed in the following manner: (1) tapes are dubbed to provide compatibility with the laboratory 14-track tape recorder, (2) data are bandpass filtered to eliminate unwanted noise outside of the dropsonde signal frequency band and are displayed on a storage oscilloscope, (3) data are then conditioned by an adjustable trigger circuit in a counter and displayed on an oscilloscope so that a suitable triggering level can be set for the counter and that the data can be viewed to determine its integrity, (4) the conditioned data are synchronously decommutated using a frequency-to-voltage converter and a "flywheel" oscillator, which is adjusted, as necessary, to maintain synchronization, and (5) the average period measurement for each 100 millisecond data sample is input to a Tektronics 4051 microcomputer for storage, processing, and display. The initial portion of the average period measurement data (which are expressed in hundredths of a microsecond) for the first launch is shown in table III. These data are generated by the counter and transferred to the microcomputer during the rerun of the entire sonde deployment. The data are then output by the microcomputer to a printer, a sample from which is given in table III. These period data are then processed in the microcomputer using the following techniques: a. First, all of the individual pressure contacts for the entire sonde deployment are manually identified by visual examination of the period data. The pressure contacts are fixed resistors (1% tolerance) switched by the baroswitch as the pressure varies. Table III, which is a sample portion of laboratory-measured period data, identifies pressure contact "makes" (switching from an insulated segment to a pressure contact) and "breaks" (switching from a contact to an insulator). It can be seen from the data that the insulating segments are characterized by much higher period values than those at the pressure contacts. The switch contacts are coded as "l's," "5's," and "15's" types to insure pressure data integrity during the sonde's excursion. In the event the RF signal is interrupted, the pressure data can be redefined once the RF is reacquired. Identifying the "l's," "5's," and "15's" pressure contacts is simplified because they have different fixed resistors, and consequently, different period values. - b. Secondly, the period data of temperature, humidity, and reference frequency is selected by the microcomputer from six cycles at each manually-entered pressure "contact-make" specification: the three data cycles preceding the contact "make," the "make" cycle, and the two data cycles following the contact "make." A six-cycle average of the period data about each pressure contact is then computed for temperature, humidity, and reference frequency. The period data are re-examined by the microcomputer and any value that is not within two standard deviations (2 σ) of the average is discarded. A new average is then calculated from the remaining period data points. - c. A listing of these averaged period values for each entire sonde deployment is then generated and visually inspected to determine if any individual averages vary considerably from their adjacent aver-The occurrence of any such discrepancies may result if two or more period values in a six-cycle segment deviate considerably from the remaining period values. In such a case, the calculated average for the six-cycle segment may be altered sufficiently by the "wild" data points as to maintain them within the 2 σ window, thus precluding their elimination by the program. Consequently, when an "unusual" average is found from a visual inspection of the listings, the individual period values that were used in the calculation of the average are then manually re-examined. If any "wild" period values are detected, then they are manually discarded. A new average is manually calculated from the remaining period values and is reinserted into the microcomputer memory. This manual technique of reinspecting the averages and recalculating any deviating averages could have been executed solely by the microcomputer, but due to time constraints, it was deemed impracticable to implement this technique into a computer program. d. After the average periods for reference frequency, temperature, and humidity are satisfactorily computed at all of the pressure contact, various algorithms stored in the microcomputer are then used to determine the temperature, humidity, altitude, and refractivity (in M and N units) at each pressure contact. These algorithms are detailed in appendix A. In addition, table IV gives a listing of the absolute pressure levels and the averaged period data that are generated by the microcomputer at the first 25 pressure contacts after the commencement of the launch of sonde No. 1. ## 3.4 Test Results A summary of the deployments and of the received audio signal information for all of the nine launched dropsondes is detailed in tables V (a) and (b). This summary is based on real-time data collection and subsequent analysis of both the deployment films and the recorded audio tapes. Mechanically, five of the nine launches had no deployment problems and three experienced premature separations of the drogue chute from the sonde assembly. Of these latter three drops, one launch also had no deployment of its main parachute, as determined by its brief flight time of 1 min, 50 s. The remaining launch had an extremely late deployment of the wind flap (air tab) and of the drogue chute (1 second after the commencement of the launch), as determined by a postflight analysis of the aircraft coverage films of the launches. The received audio dropsonde signal was not able to be processed in all but two of the launches because the signal, in general, was noisy, erratic, and had a marginal S/N (Signal-to-Noise) ratio. The RF levels were also marginal in most cases and RF dropouts and RFI (Radio Frequency Interference) occurred. The magnitude and severity of these RF problems for each drop is detailed in tables V (a) and (b). In addition, four of the sondes (drop numbers 3, 4, 6 and 7) had inoperable thermistors (temperature sensors) and one had an extremely noisy signal from the hygristor (humidity sensor). An examination of the aircraft films revealed that the expendable plastic plunger disc assembly of the P-3C CAD launching system became a free body after leaving the aircraft. As a result, the disc contacted the sensor end of the dropsonde, causing damage to both the thermistor and the hygristor. Furthermore, it is also suspected that the CAD launching of the dropsondes might induce a slight offset in the calibration of the baroswitches, as a result of the large shock force created during a launching. Cursory laboratory measurements imply that this force may induce a set (a displacement or "readjustment") in the click-adjustment assembly of the baroswitch, with the possibility of causing an offset of a few millibars. It is suggested that this effect be further investigated, if it is decided to return to the baroswitch method, rather than the CAPS or continuous method, of measuring pressure. Launch numbers 1 and 4 were the only drops that contained processable data, but only the audio signal of drop No. 1 was processed in the laboratory due to the lack of a thermistor signal during the fourth drop. Furthermore, the Bendix RDSRU processor was incapable of processing any of the incoming dropsonde data during the flights due to the general poor quality of the received signal. Also, an intolerable number of unidentifiable contacts of the pressure sensor baroswitch were reported by the RDSRU. However, with the advent of the CAPS pressure sensor and the current development of the RASP dropsonde processor, any shortcomings of the baroswitch and of the RDSRU processor will be alleviated. The processed data (M and N units, temperature, and humidity) for sonde No. 1 and for the rawindsonde launched by the National Weather Service are shown in graphical form in figures 2 and 3, respectively. Printouts of the individual data points versus altitude and pressure are given in tables VI and VII. Approximately the
first 1,000 feet of dropsonde data can be safely discounted since a brief period of time is required for the dropsonde sensors to stabilize to the outside ambient conditions after being subjected to long periods of warm temperature and low humidity conditions in the launching aircraft. Figures 4 through 8 compare the rawindsonde data listings with those of dropsonde No. 1. It can be seen that the data agree very closely, especially the M units, N units, and temperature comparisons. The fact that the rawindsonde and the first dropsonde were launched about one hour apart may explain the discrepancies in the humidity data, since the cloud cover changed slightly. Also, it is not uncommon that a 5-6% difference in humidity measurements may occur between two different hygristors subjected to identical atmospheric conditions. Photographs of the dropsonde signal acquired from the tape recorded data are shown in figures 9 through 15. The waveforms in figures 9, 10, and 11 are from sonde No. 1, the only sonde whose data was capable of being processed. In figure 9 an entire 100 millisecond data parameter sample is illustrated, along with the halves of two other data samples. In figure 10, the undistorted feature of the dropsonde signal, which is in the neighborhood of 1,400 Hz in this time period, is captured. Figure 11 depicts the change in frequency between two successive data parameters. The signal waveform for dropsonde No. 3, which had an inoperable thermistor and a defective, noisy hygristor signal, is shown in figures 12 and 13. In figure 13, the 150 Hz noise spikes generated by the hygristor can be observed prior to the appearance of the reference frequency signal. Lastly, in figures 14 and 15, the lack of a thermistor signal is shown for sonde No. 4. The complete 400 millisecond data cycle is captured in figure 14. ## 3.5 <u>Conclusions and Recommendations</u> The following conclusions were drawn from an in-depth evaluation and analysis of on-site data, aircraft films, and laboratory data processing: - a. Five of the nine launches had no deployment problems. Three of the launches experienced premature separations of the drogue chute from the sonde housing (of which one launch had no deployment of the main parachute). An extremely late deployment of the air tab and of the drogue chute were problem areas incurred by the remaining launch, although these are not considered to be operational failures. - b. In general, the received dropsonde signal was noisy, erratic, and had a marginal S/N ratio. RF signal dropouts and RFI also occurred. - c. Four of the sondes had inoperable thermistors and one generated a very noisy hygristor signal. - d. Due to the poor quality of the incoming signal, the RDSRU processor was unable to process any of the dropsonde data during the flights. Only the first launch was able to be processed in the laboratory, using the NAVAIRDEVCEN processing scheme described earlier. The processed dropsonde data agrees very closely with the rawindsonde data, except for a 10% offset in relative humidity in many instances. - e. As a result of cursory laboratory measurements, it is suspected that the CAD launching of the dropsondes may create a shock force of sufficient amplitude to induce a slight offset in the calibration of the baroswitches. It is recommended that this effect be further investigated if it is decided in the future to discard the CAPS sensor and return to the baroswitch. Several dropsonde design changes were recommended as a result of this test. The main revisions were concentrated in the areas of poor dropsonde signal reception, premature drogue chute and timer mechanism deployment, and inoperable thermistor and hygristor sensors. A complete list of the recommended design changes is given in table VIII. The most important design revisions include: (1) a redesign of the dropsonde antenna by NAVAIRDEVCEN to provide improved signal transmission, specifically, an improved impedance match of the SSQ-41A transmitter to the "hula-hoop" dropsonde antenna, (2) an alteration in the audio modulating signal from a 100 µs pulse to a 50% duty cycle for improved S/N ratio, (3) the use of a stronger parachute cord, (4) a redesign of the release latch lock spring to provide a more positive lock for the timer mechanism, (5) the placing of a knot in the main cord to anchor the drogue chute attachment, (6) the use of grommets in the slots that the nylon cord passes through to reduce the possibility of cord breakage, (7) the changing of the thermistor and hygristor mounts to permit easier installation and replacement of these sensors, and (8) the placing of the thermistor-hygristor mount an additional 1 inch farther inside the sonde housing to preclude any postlaunch damage from the plastic CAD plunger disc. ## 4. WARREN GROVE DROPSONDE TEST (11 July 1978) ## 4.1 Objective The objective of this test was to qualify the dropsonde air deployment mechanism, including the timer release, timer, and the drogue and main parachute components, for aircraft launches within the envelope established for sonobuoys. In addition, a verification was necessary of the recommended corrective mechanical design changes implemented into the dropsonde as a result of the Key West test findings (refer to table VIII). ## 4.2 Test Setup The test consisted of CAD launching nine electrically inert drop-sondes in sonobuoy launch containers from a Navy P-3C aircraft. Active electronics were not included in the dropsondes since the test objective was to qualify the deployment mechanism. However, the normal weight and center of gravity of the dropsondes were maintained by utilizing ballast. The test format consisted of launching dropsondes, one at a time, from the aircraft at three distinct points on the launch envelope. The first three dropsondes were dropped with an aircraft velocity of 200 km, the second three at 250 km, and the final three at 330 km, which was maximum velocity. All launches were at an aircraft altitude of 1,000 ft. The tasks of some of the ground personnel included observation of each launch, with binoculars and with the naked eye, noting any irregularities during a launch, measuring the time between the start of a launch and the initial deployment of the main parachute via a stopwatch, and observing the location of the various deployment parts at ground impact for retrieval and failure analysis purposes. In addition, a communications truck was utilized for coordinating the launches with the aircraft and two handheld cameras, one forward of and one to the port side of the launch point, were used to photograph each launch. Additional film coverage of the launches was provided on the aircraft by a camera pod mounted on the starboard wing. After every third drop, further launches were suspended for approximately 15 minutes so that the various parts of the previously launched dropsonde deployment mechanisms could be recovered and analyzed for damage. # 4.3 Test Results Tables IX (a), (b), and (c) describe the results of the nine launches, including findings made by analyzing the recovered dropsonde parts and by observing the films from the three separate cameras. These tables also include deployment-related timing data, such as timer release and drogue and main chute deployment, all of which were obtained from a "stop-action" analysis of the films. Due to the thick underbrush at the test site and the drifting of a few of the chutes at least a mile away from the launch point, all of the deployment pieces were unable to be recovered. Unfortunately, the main parachute for dropsonde No. 7 and the drogue chutes for units No. 8 and 9 were not found. These hardware items would have aided in the determination of the exact causes for the launch failures evidenced by these units and in determining corrective action necessary. In summary, five of the nine launches were satisfactory and had no problems with the deployments or landings. Only one failure occurred out of the six dropsondes launched at aircraft speeds of 250 km or less. This failure (dropsonde No. 3) was caused by the timer mechanism, which failed to release and prevented the main chute from opening. Laboratory analysis determined that a burr on the sear arm of the timer mechanism hindered the operation of the release cam, which releases the timer mechanism. This failure mode of the timer was repeated in the lab, but the burr became more polished with each iteration. All three of the dropsondes launched at the maximum aircraft velocity (330 km) experienced failures. Premature deployment of the drogue chute, timer mechanism, and main chute occurred on dropsonde No. 7. The main chute ripped away from the canister only 0.32 second after launch and the chute lines were severed approximately 5 in. from the anchor Subsequent lab tests showed that thumb pressure on the lever nearest the sear could force the cam over the sear, causing premature release of the timer. In addition, the tensile strength of the main chute lines may not be capable of handling the shock forces of parachute inflation at this launch envelope point. The failures incurred in dropsonde launches No. 8 and 9 were very similar to No. 7 in that the drogue chute separated from the timer almost immediately after launch. On No. 8, the remainder of the deployment sequence was normal, but on No. 9, the timer mechanism and main chute deployed prematurely, within one second after launch. One noteworthy item is that the timer mechanism sequence (on No. 8) and the main chute deployment (on No. 8 and 9) functioned properly without the drogue chute. It appears highly probable that the drogue chute lines are unable to handle the forces created by the maximum aircraft velocity and may need to be strengthened. In addition, on No. 8, damage was inflicted upon the 500 pound test bridle line, which was cut 10% through at the grommet adjacent to the Rhodes timing unit. This occurrence may have also contributed to the separation
of the drogue chute from the timer. For the six dropsondes in which the timer mechanism functioned properly, the times from air flap release to timer mechanism release were 5.16, 4.98, 5.28, 4.68, 5.28, and 4.50 seconds, respectively, for an average time of 4.98 seconds. This average, as well as all of the individual launch times, is within the specification value of 5 ±1 seconds for main chute deployment. # 4.4 Conclusions and Recommendations In summary, five of the nine launches were satisfactory and had no problems with the deployments or descents. Only one failure occurred out of the six dropsondes launched at aircraft speeds of 250 km or less. All three of the dropsondes launched at the maximum aircraft velocity (330 km) experienced failures. All of the test failures can be related to one or more of the following areas: (1) rough finished or improperly polished parts in the timer mechanism, (2) marginal design tolerances in the timer release hardware, and (3) marginal drogue and main parachute shroud line strength at the upper end of the launch envelope. Table X details the dropsonde design revisions recommended as corrective action for these failures. The most important design changes included: (1) deburring and polishing all sears and mating surfaces in the timer mechanism before assembly, (2) enlarging the sear engagement area in the timer mechanism to prevent the cam plate from overriding the sear lever and causing premature timer release, and (3) an improved attachment, including the placement of a grommet, of the drogue chute to the bottom of the timer mechanism. From the results of this test, another dropsonde flight test to verify the deployment cycle was recommended, with emphasis on the higher aircraft speeds (300 km or greater). The results of this test are discussed in the next section. # 5. LAKEHURST DROPSONDE TEST (6 September 1978) # 5.1 Objective The objective of this test was basically the same as that for the Warren Grove drop test; i.e., to qualify the dropsonde air deployment mechanism for aircraft launches within the envelope established for sonobuoys. In addition, a verification was necessary of the recommended corrective mechanical design changes implemented into the dropsonde as a result of the Warren Grove test results. # 5.2 Test Setup With one exception, the test format, including the launching procedures and the personnel tasks, was identical to that of the Warren Grove test. The only exception was that the dropsondes were launched at higher aircraft speeds during this test. For this test, dropsondes were launched, one at a time, from the aircraft at four distinct points on the launch envelope. The first two dropsondes were dropped with an aircraft velocity of 275 knots, the second two at 300 knots, the third two at 325 knots, the next one at 345 knots, and the final two at 350 knots, which was the P-3C's maximum velocity. All launches were at an aircraft altitude of 1000 feet. In addition, after the second, fourth, and sixth dropsondes were dropped, further launches were suspended for approximately 15 minutes so that the various parts of the previously launched dropsonde deployment mechanisms could be recovered and analyzed for damage. ### 5.3 Test Results In summary, five of the nine launches were satisfactory and had no visible problems with the deployments or landings. The four failures occurred at aircraft speeds of 275, 325, 345, and 350 knots, respectively. The failure at 275 knots (launch No. 2) was caused by the jamming of the timer mechanism in the sonde tube, resulting in the inability of the timer to release and the failure of the main chute to deploy. In the failure at 325 knots (launch No. 6), the main parachute deployed prematurely, within 0.4 second after launch, and the main parachute bag separated from the main chute and was unable to be recovered. However, the main chute deployed successfully and a normal launch resulted. In launch No. 7, at 345 knots, only the drogue chute deployed. It was subsequently found that the timer mechanism timed out, but did not release. In the last failure, at 350 knots (launch No. 8), the tie line snapped, releasing the drogue chute from the timer mechanism. Consequently, the timer mechanism and main parachute did not release from the sonde until moments before ground impact. A detailed compilation of the deployment results and postlaunch findings is shown in tables XI(a) and (b). A tabulation of deployment related timing events, such as timer release and main parachute deployment, is given in table XII. From the data in table XII, it can be calculated that the average time for timer release (for the five launches that had successful timer releases) was 5.37 s (which is within the specification limit of 5 ± 1 s). This average includes the timer release time for launch No. 8 (6.38 s), which was above the specification limit, but does not include the release time (0.18 s) for launch No. 6, in which the timer mechanism released prematurely. Based on data in table XII, it can also be ascertained that the average time for the main chute to fully open (for the four successful launches that have available data) was 5.8 s (no specification limit exists). Table XII also indicates a late wind flap release and drogue chute deployment for launch No. 8 and 9. All of the dropsonde hardware (the air tab, drogue chute and its bag, main chute and its bag, timer mechanism, and cannister) was recovered, except for the air tab on drop No. 4 and the main parachute bag on drop No. 6. The various stages of an actual dropsonde deployment are depicted in figures 16 through 21. These photographs were extracted from the aircraft and ground coverage motion picture films and are typical of all normal drops, as substantiated by all previous drop test films. Figure 16 illustrates the release of the air tab and the initial deployment of the drogue chute from the sonde housing as the dropsonde is being launched from the P-3C aircraft. In figure 17 the drogue chute has completely opened. Figure 18 depicts the release of the drogue chute, the timer mechanism, and the main parachute bag from the main parachute and the sonde housing. The full opening of the main chute is captured in figure 19, along with the complete separation of the main chute from the timer mechanism. In figure 20 the vertical descent of the sonde is illustrated. Lastly, figure 21 depicts the sonde moments before ground impact. Special note can be taken of the vertical nature of the sonde's descent. In addition, the absolute sizes of the dropsonde and of the main chute can be easily ascertained. #### 5.4 Conclusions and Recommendations From the results of this test, it was concluded that the dropsonde design was satisfactory for launching from aircraft at speeds up to 300 knots at 1000 feet of altitude. Three failures occurred out of the five dropsondes launched at aircraft velocities of 325 knots or greater. At velocities of 300 knots or less, only one of four sondes experienced any failures. The two main causes of the deployment failures were in the areas of improper timer mechanism release and fraying of the 500 pound test line. It was recommended that the design changes to the timer mechanism listed in table XIII be implemented to greatly reduce these problems. ### 6. CAPE HATTERAS DROPSONDE TEST (8 September 1978) ## 6.1 Objective The objective of this test was to verify the RF strength and the integrity of the transmitted dropsonde signal and to employ near real-time data reduction of this signal, utilizing a Bendix RDSRU processor. Successful test results would validate the post-Key West improvements implemented into the antenna-transmitter subsystem, which will be described subsequently. # 6.2 Test Setup The subject dropsonde test consisted of CAD launching five electrically active dropsondes in sonobuoy launch containers from a Navy P-3C aircraft. The test format consisted of launching dropsondes, one at a time, from the aircraft at an altitude of 14,500 feet and an aircraft speed of 200 knots. In addition, the aircraft remained within 25 miles of each launch point so that dropsonde signal reception could be maintained. The tasks onboard the aircraft consisted of recording the dropsonde data with an AQH-4 tape recorder, monitoring the signal levels with an oscilloscope and an ARR-72 receiver signal strength meter, and taking photographs of the incoming signal from the oscilloscope display. Pressure calibration data and other parameters were also input into the RDSRU processor between drops. These data were evaluated after data collection. In addition, the dropsonde deployments were photographed through the utilization of a high speed (200 frames/s) camera mounted on wing station 13. Table XIV details the launch conditions and the deployment times for the five launches. As an aid to the data collection and processing, a combined test was arranged with the weather station at Cape Hatteras to launch a radiosonde at 1100 and 1300 local time (EDT) for data comparison purposes. Prior to the actual drops at Cape Hatteras, extensive laboratory tests were conducted at JMR Systems Corporation to determine whether all of the five sondes met the specification requirements. Tests that were performed included verifying the commutation rate, sensor resistance values, oscillator performance, and RF performance, including frequency, power output, and deviation. Calibration of all of the baroswitches was also accomplished on the day prior to the drops. Furthermore, the antenna-transmitter subsystem of these sondes were subjected to extensive testing at NAVAIRDEVCEN. These five sondes were optimally tuned in the laboratory, using an improved simplified transmitter board tuning procedure that utilized a maximum power, rather than minimum current, technique. More detailed information concerning this tuning procedure can be found in reference (b). In addition, the RF strength of the sondes was measured
at the NAVAIRDEVCEN antenna range. Refinements in the antenna design, specifically a modification of its actual dimensions and the establishment of an improved grounding point, were also developed. However, these refinements were not able to be implemented into the five sondes to be tested, since they had already arrived with the former antenna design. The 110 preproduction dropsondes will be implemented with the new antenna design. ## 6.3 Test Results All five of the dropsonde launches were successful in the areas of mechanical deployment and RF and data transmission. There were no problems in the deployments of the dropsondes and the transmitted dropsonde signal was received almost immediately after launch. The received dropsonde signal was very clean, had sufficient amplitude, and was judged to be of the highest quality to date during any field test. The RF signal strength was at the maximum level on the ARR-72 receiver indicators and fading of the signal only occurred on the first launch, during which occasional noise bursts and signal dropout occurred. Table XV summarizes the received signal information for each launch and contains additional information pertaining to local atmospheric conditions during the flight and the dropsonde sensor calibration resistances. The received signal more resembled a sinusoidal wave rather than the usual square wave and did contain occasional ringing. A subsequent investigation showed that these effects were created by the bandpass filters in the aircraft sonobuoy interconnection box, which is preceded by the audio switching assembly and the ARR-72 sonobuoy receivers. To resolve this problem, it has been decided to replace the audio switching assembly and the sonobuoy interconnection box with a presently used tape amplifier box, a RASP switching and systems indication assembly box, and possibly a better designed bandpass filter, all of which will precede the RASP processor. Figure 22 is a block diagram of this proposed aircraft configuration. Laboratory photographs of the received dropsonde signal taken from a Honeywell 7600 tape recorder output are depicted in figures 23 through 26. The ringing of the signal can be viewed in figures 23 and 24, which represent drop No. 4 and 2, respectively. The sinusoidal nature of the received signal is illustrated in figure 25, which was acquired from the initial launch. The final photograph, figure 26 (drop No. 5), depicts the commutation from one data parameter to another. Even though the integrity and the amplitude of the received dropsonde signal was very good, only one satisfactory data run (drop No. 5) was generated onboard the aircraft utilizing the Bendix RDSRU processor. The remaining four RDSRU data runs were affected by misalignments of the pressure table that led to an excess of unidentifiable contacts. The RDSRU processor was only capable of producing two data cycles of information (800 ms temperature, pressure, and humidity period data as a function of time for the middle three launches. A subsequent attempt was made in the laboratory to process the first four launches, using the tape recorded data, an amplifier, bandpass filter, and the RDSRU processor, but no improvement in the processing capability was attained. Since a current development effort is ongoing to improve the capabilities of the RDSRU processor (namely, the RASP processor), the inability of the Bendix RDSRU to properly process this data is considered to have negligible impact on the dropsonde program. Table XVI illustrates the aircraft processed data output for launch No. 5 (sonde No. 15). It can be seen from the top portion of table XVI that the RDSRU reported five unidentifiable contacts for this launch. The last unidentifiable contact occurred at the bottom end of the data dump, at a pressure of approximately 812 mbar. Since the RDSRU can only calculate and display valid data from the water surface to the location of the last unidentifiable contact, only about half of the total data from this launch was displayed by the RDSRU. Pressure values (in mbar), temperature (in ° c), humidity (in % of relative humidity), and M and N refractivity units are also presented in table XVI as a function of altitude (in meters). The M units are only displayed at the beginning and the end of the data output. Table XVII represents a portion of the RDSRU data dump of period information for the four parameters (reference frequency R, temperature T, pressure P, and humidity H) as a function of time for sonde No. 15. This period data is used in various algorithms in the RDSRU for computation of temperature, humidity, M and N units, and altitude. The circled data points in tables XVI and XVII are "wild" temperature values that will be explained in section 6.4. In addition, for the last drop (sonde No. 15), the processor displayed and classified abnormal refractivity conditions and listed the M unit values and altitudes at the boundaries of each refractivity gradient, as shown in table XVIII. Lastly, an example of the launch conditions information and the baroswitch calibration data that is input into the RDSRU processor prior to a dropsonde launching is illustrated in table XIX. An analysis of the films from the aircraft camera on wing station 13 showed a normal deployment for the dropsondes, except for a delay in the release of the air tabs (wind flaps) in launches 2, 3, and 4. It took 0.78, 0.50, 0.22, and 0.04 seconds, respectively, for the air tabs to release from the sonde tube in launches 2 through 5, respectively. The initial launch was unable to be captured on film due to a misunderstanding of the drop sequence. It is believed that the variance in the air tab delays are due to the orientation of the sondes in the sonobuoy launch containers and their orientation in relation to the resultant air stream direction upon launch. These delays should pose no operational problems. The total drop times (min:s) for each launch from aircraft ejection to splashdown were 6:34, 7:10, 6:12, 6:43, and 7:05, with an average deployment time of 6 minutes and 45 seconds. The initial launch was at an aircraft altitude of 15,000 feet and the remainder of the launches were at 14,500 feet. ## 6.4 Laboratory Data Processing The laboratory processing setup of the tape recorded data was identical to that previously mentioned in the Key West dropsonde test section of this report and in appendix A for the algorithms that were used. A compilation of the individual data points for temperature, relative humidity, and M and N refractivity units as a function of altitude is given in tables XX through XXIV for sonde No. 11 to 15 (launch No. 1 to 5), respectively. Figures 27 through 31 are graphs of this same meteorological data versus altitude for sonde No. 11 through 15, respectively. A comparison of these graphs reveals an excellent similarity among all five launches for the four meteorological parameters. In addition, the end points of the processed temperature data agree very well with the surface and launch altitude air temperatures of 27° C and 5° C, respectively, measured during the flight. The rawindsonde data that was supplied by the National Weather Service and the calculation of M and N units from this data is illustrated in graphical form in figures 32 and 33 and in tabular form in tables XXV and XXVI. Due to the close time proximity of the launches of the first rawindsonde and dropsonde No. 11, and the second rawindsonde and sonde No. 15, respectively, a comparison can be made of the four meteorological parameters (temperature, relative humidity, M units, and N units) for each rawindsonde and its corresponding dropsonde. These data are shown in figures 34 through 43. It can be seen that the dropsonde and rawindsonde data agree very closely, except for an offset in humidity in several instances. A strong correlation exists between the temperature data, although the rawindsonde data is, in general, approximately 1° C higher that the dropsonde data. The humidity and temperature data can be safely discounted for approximately the first 1000 feet of the launch because the sensors need a finite time period to stabilize in the atmospheric environment after being stored in the low humidity, warm temperature environment of the launching aircraft. Lastly, a comparison of the ultimate output, M and N units, demonstrates an extremely close match between the rawindsonde and dropsonde data. It can be seen from a comparison of the data that, in many cases, the dropsonde relative humidity data is as much as 10% greater than the corresponding rawindsonde data, especially for dropsonde No. 15. However, it can be seen that the relative shape of the humidity curves is very similar. Three possible reasons may account for this 10% offset. First, due to the inherent properties of the hygristor, an offset of as much as 5-6% may exist between two different hygristors measuring identical atmospheric conditions. Secondly, a 13-mile difference in the rawindsonde and dropsonde launch points existed (confirmed by the fact that the P-3C launching aircraft used a visual fix on the Diamond Shoals east of Cape Hatteras to launch each dropsonde within a 1/4-mile radius of each other). As a result, the humidity conditions measured by the rawindsonde and dropsonde hygristors may have differed enough to account for this offset, considering that relative humidity may be quite inhomogeneous near a land-sea interface. Thirdly, since stratified vapor layers existed during the day of testing (nearly all of the humidity data is less than 80% RH), the presence of wind shears in the atmosphere could cause these vapor layers to change gradually with time. Tables XXVII and XXVIII present the wind information measured by the two rawindsondes. The data shows that wind shears as great as 20-25 knots from 7000 to 18,000 feet occurred during the day of testing. Further substantiation of this wind shear argument is augmented by the temporal
variation of humidity when a comparison is made of only the rawindsonde humidity data against itself or of only the dropsonde humidity data against itself. However, the general shape of the humidity curves does not change. #### 6.5 Bendix RDSRU Data Processing An analysis of the parameter period data (refer to table XVII) that the RDSRU generated during the flight for the last launch was made using the NAVAIRDEVCEN processing algorithms previously described. This period data was utilized to determine the corresponding pressure contacts and was used in the aforementioned algorithms to generate the graphs of temperature, relative humidity, and M and N units versus altitude depicted in figure 44. A detailed listing of the individual parameter values is given in table XXIX. An inspection of the temperature and M and N units graphs reveals an anomaly at 4000 feet, corresponding to the circled temperature period point in table XVII and the circled temperature values in tables XVI and XXIX. Since this period value is approximately 7% less than the expected value, it is suspected that during the latter portion of the sampling period (10 cycles) for the temperature parameter, a noise spike in the received sonde data generated a false input to the zero crossings detector, resulting in an inaccurate temperature period value (higher frequency — shorter period). If this explanation is indeed factual, then it should be apparent that the Bendix RDSRU and its replacement, the RASP, should possess a data validation and noise rejection capability. It can be seen that the graphs (figure 44) of the RDSRU data generated in the aircraft, but processed with the NAVAIRDEVCEN algorithms, agree closely with the corresponding dropsonde No. 15 graphs (figure 31) generated by the NAVAIRDEVCEN processing scheme, except, of course, for the data anomaly at 4000 feet. This RDSRU data also agrees with the RDSRU data dump during the flight (table XVI). Subsequent to the flight, attempts were made in the laboratory to process the sonde tape recorded data through the Bendix RDSRU processor, utilizing a Hewlett-Packard 467A variable power amplifier and an SKL bandpass filter (20-2000 Hz) between the Honeywell 7600 tape recorder and the processor. Again, the only successful run was with sonde No. 15, which concurs with the aircraft flight processing results, and no unidentifiable contacts were reported by the RDSRU. Tables XXX, XXXI, and XXXII are listings of the actual processor outputs including the parameter values versus altitude, the flagged gradients, and the parameter period data versus processing time, respectively. It should be mentioned that the pressures listed in table XXX are slightly incorrect because the wrong baroswitch calibration data was entered into the processor. An estimated, rather than the actual, surface pressure was actually used by the processor. The rawindsonde data containing the true surface pressure was later received from the Cape Hatteras Weather Station. However, the Bendix processor output data in table XXX agree well, in a large number of cases, with the data in table XXIV for sonde No. 15 that used the NAVAIRDEVCEN processing scheme. A side-by-side comparison of the data in table XXX versus the data in table XXIV is given in table XXXIII. The period data generated in the laboratory by the Bendix RDSRU for sonde No. 15 (table XXXII) was then input into the NAVAIRDEVCEN processing scheme, the results of which are given in graphical form in figure 45 and in tabular form in table XXXIV. Figures 46 through 50 depict temperature, relative humidity, and M and N units comparison plots of the Bendix RDSRU data (in table XXXIV) as a function of the data generated for dropsonde No. 15 (see figure 31) by exclusive use of the NAVAIRDEVCEN processing setup. It can be seen from the comparison plots that, when subjected to the same algorithms, the period data generated by the RDSRU can produce meteorological data that is almost identical to meteorological data produced from period values that are generated and averaged by the more elaborate NAVAIRDEVCEN processing setup. Slight differences in the humidity graph (figure 47) and consequently, the M and N units graphs (figures 48 through 50), are apparent. These discrepancies are a result of the NAVAIRDEVCEN data being more accurate because an average of six of the parameter values around a pressure contact is performed with the NAVAIRDEVCEN data. Averaging cannot be done with the Bendix RDSRU generated data, since only one period value of each parameter is output by the RDSRU at any pressure contact. As a result, the location of and the M units deficit of the refractivity ducts is slightly different in the comparison plots. # 6.6 Conclusions and Recommendations The following conclusions were drawn from an indepth evaluation and analysis of onsite data, aircraft films, and laboratory data processing: - a. All five of the dropsonde launches were successful in the areas of deployment and RF and data transmission. - b. The received dropsonde signal in all launches was judged to be of the highest quality to date during any field test, specifically in the area of RF signal strength. - c. The received dropsonde signal more resembled a sinusoidal wave rather than the anticipated square wave and did contain some ringing. These problems were subsequently traced to the bandpass filters in the P-3C sonobuoy interconnection box, which will be replaced with an improved system. - d. Only one satisfactory data run was made during the test onboard the P-3C aircraft utilizing the Bendix RDSRU processor. One of the temperature data points generated by the RDSRU was in error by 10°C. - e. Satisfactory data runs of the five launches were subsequently compiled in the laboratory with the use of a sophisticated processing scheme. The data agreed very well with the corresponding rawindsonde data, except for an offset in humidity in several instances. - f. A satisfactory data run was performed in the laboratory with the RDSRU processor, utilizing a power amplifier and a bandpass filter between the tape recorder output and the RDSRU input. The RDSRU-generated period data for each parameter was then input to the algorithms used in the NAVAIRDEVCEN processing scheme and atmospheric data plots were produced. A comparison of these RDSRU plots with the atmospheric data plots for the same launch generated solely by the NAVAIRDEVCEN processing setup demonstrated an excellent matchup of temperature, humidity, and M and N units. Based on the successful outcome of this test, no major subsystem redesign to the dropsonde sensor is needed. However, as a result of all of the test findings to date, the following design modifications will be incorporated into the dropsonde for the 110 preproduction units: - a. Modification to antenna design - b. Improved transmitter board tuning procedure - c. Honeywell CAPS electronics package to replace the baroswitch and its related components and circuitry - d. Allowance for Honeywell component package to be plugged in as a last assembly procedure - e. Deeper recession of the sensors in the housing package for greater protection during launching conditions - f. Temporary protective cover to be placed over the sensors section for added protection during shipping and handling The following design changes should be made to future carry-on dropsonde processors: a. A data validation and noise rejection capability to verify received data and reject unwanted data b. A data averaging technique to eliminate the adverse effects of any "wild" data points and to ultimately provide a more accurate data output # 7. OVERALL PROGRAM CONCLUSIONS AND RECOMMENDATIONS From a mechanical and an electrical standpoint, the dropsonde is ready to proceed into the preproduction and TECHEVAL phases of the program. It can be concluded, from the results of both the Lakehurst and Warren Grove tests, that the deployment related design problems have been identified and corrected, and the mechanical design risks minimized (up to aircraft velocities of 300 knots). The successful outcome of the Cape Hatteras test demonstrated that the RF and electrical problems identified during the Key West test have been corrected. It can be safely concluded, then, that the RF and electrical problems have been identified and that electrical type design risks have been minimized. Furthermore, deficiencies in the RDSRU processor that were identified during the Cape Hatteras test dictate the need for data validation, noise rejection, and data averaging capabilities to be implemented into future dropsonde processors, specifically the RASP processor. #### REFERENCES/BIBLIOGRAPHY - (a) NAVOCEANSYSCEN (Naval Ocean Systems Center) Technical Document 238 of Mar 1979, "Integrated Refractive Effects Prediction System (IREPS), Interim User's Manual," by H. V. Hitney and R. A. Paulus - (b) NAVAIRDEVCEN Technical Memorandum 3044 of 11 May 1979, "SSQ-41A Transmitter Board Tuning Procedure for Utilization in Preproduction AN/AMT-22 Dropsondes," by John Sniscak - (c) NAVWEPS 50-1D-510 Manual of Barometry, Volume 1, First Edition, 1963 - (d) NAVAIRDEVCEN Report 76335-30, "Breadboard Dropsonde-Minirefractionsonde Analyzer, Volume 1," by Mervin Werst, Analytics, Inc., Willow Grove, PA - (e) NAVAIRDEVCEN Report 76129-30-A, "Mini-Refraction Sonde Laboratory Tests," by Curtis Motchenbacher, Honeywell, Inc., Hopkins, MN FIGURE 1. NAVAIRDEVCEN Laboratory Data Processing Scheme FIGURE 2. NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 1 at Key West FIGURE 3. Key West Rawindsonde Meteorological Data LAUNCH TIME: 18:10:29Z -... DROPSONDE No.1 LAUNCH TIME: 19:05:00Z +...RAWINDSONDE FIGURE 4. Temperature Data Comparison of Rawindsonde and Sonde No. 1 at Key West 59 LAUNCH TIME: 19:05:00Z -... DROPSONDE No.1 +...RAWINDSONDE KEY WEST LAUNCH TIME: 18:10:29Z FIGURE 5. Humidity Data Comparison of Rawindsonde and Sonde No. 1 at Key West LAUNCH TIME: 19:05:00Z
LAUNCH TIME: 18:10:29Z -... DROPSONDE No. 1 +...RAWINDSONDE FIGURE 6. M-Units Data Comparison of Rawindsonde and Sonde No. 1 at Key West DATE: 02/16/78 LAUNCH TIME: 19:05:00Z +...RAWINDSONDE KEY WEST -.. DROPSONDE No.1 LAUNCH TIME: 18:10:29Z FIGURE 7. Expanded M-Units Data Comparison of Rawindsonde and Sonde No. 1 at Key West LAUNCH TIME: 18:10:29Z -... DROPSONDE No.1 LAUNCH TIME: 19:05:00Z +...RAWINDSONDE FIGURE 8. N-Units Data Comparison of Rawindsonde and Sonde No. 1 at Key West FIGURE 9. Received Audio Signal from Key West Sonde No. 1 FIGURE 10. Expanded View of Audio Signal from Key West Sonde No. 1 FIGURE 11. Commutation of Two Successive Data Samples from Key West Sonde No. 1 FIGURE 12. Defective Audio Signal from Key West Sonde No. 3 FIGURE 13. Noise Spikes in Hygristor Signal of Key West Sonde No. 3 FIGURE 14. Missing Thermistor Signal in Key West Sonde No. 4 FIGURE 15. Expanded View of Missing Thermistor Signal from Key West Sonde No. 4 Figure 16 - Air Tab Release from Dropsonde Housing Figure 17 - Full Deployment of Drogue Parachute Figure 18 - Separation of Main Parachute from Timer Mechanism Figure 19 - Full Deployment of Main Parachute Figure 20 - Vertical Dropsonde Descent Figure 21 - Dropsonde Descent at Ground Impact FIGURE 22. Proposed P-3C Dropsonde Processing Configuration FIGURE 23. Dropsonde Signal Ringing Phenomena at Cape Hatteras FIGURE 24. Comparative View of Signal Ringing FIGURE 25. Sinusoidal Nature of Received Sonde Signal FIGURE 26. Typical Data Parameter Commutation CAPE HATTERAS: LAT 35 deg 09 min N, LONG 75 deg 18 min W DATE:09/08/78 SONDE NO.11 LAUNCH TIME: 11:28:42(EDT) FIGURE 27. NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 11 CAPE HATTERAS: LAT 35 deg 09 min N, LONG 75 deg 18 min W DATE: 09/08/78 SONDE NO.12 LAUNCH TIME: 11:49:50(EDT) FIGURE 28. NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 12 FIGURE 29. NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 13 CAPE HATTERAS: LAT 35 deg 09 min N, LONG 75 deg 18 min W DATE:09/08/78 SONDE NO.14 LAUNCH TIME: 12:39:30(EDT) FIGURE 30. NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 14 CAPE HATTERAS: LAT 35 deg 09 min N, LONG 75 deg 18 min W DATE:09/08/78 SONDE NO.15 LAUNCH TIME: 13:02:18(EDT) FIGURE 31. NAVAIRDEVCEN Processed Meteorological Data for Sonde No. 15 CAPE HATTERAS RAWINDSONDE:LAT.35deg 16min N,LONG.75deg 33min W DATE:09/08/78 LAUNCH TIME: 11:00:00CEDT) FIGURE 32. Meteorological Data from Rawindsonde No. 1 CAPE HATTERAS RAWINDSONDE: LAT.35 deg 16 min N LONG.75 deg 33 min W DATE:09/08/78 LAUNCH TIME: 13:00:00(EDT) FIGURE 33. Meteorological Data from Rawindsonde No. 2 FIGURE 34. Temperature Data Comparison of Rawindsonde No. 1 and Sonde No. 11 +...RAWINDSONDE CAPE HATTERAS DATE: 09/08/78 LAUNCH TIME:11:00:00(EDT) -... DROPSONDE No. 11 LAUNCH TIME: 11:28:42(EDT) FIGURE 35. Humidity Data Comparison of Rawindsonde No. 1 and Sonde No. 11 LAUNCH TIME: 11:28:42(EDT) -...DROPSONDE No.11 LAUNCH TIME: 11:00:00(EDT) +...RAWINDSONDE FIGURE 36. M-Units Data Comparison of Rawindsonde No. 1 and Sonde No. 11 FIGURE 37. Expanded M-Units Data Comparison of Rawindsonde No. 1 and Sonde No. 11 LAUNCH TIME: 11:28:42(EDT) -...DROPSONDE No.11 LAUNCH TIME: 11:00:00(EDT) +...RAWINDSONDE FIGURE 38. N-Units Data Comparison of Rawindsonde No. 1 and Sonde No. 11 DATE: 09/08/78 LAUNCH TIME:13:00:00(EDT) +...RAWINDSONDE CAPE HATTERAS LAUNCH TIME: 13:02:18(EDT) -... DROPSONDE No.15 FIGURE 39. Temperature Data Comparison of Rawindsonde No. 2 and Sonde No. 15 LAUNCH TIME: 13:02:18(EDT) -... DROPSONDE No. 15 +...RAWINDSONDE LAUNCH TIME: 13:00:00(EDT) FIGURE 40. Humidity Data Comparison of Rawindsonde No. 2 and Sonde No. 15 LAUNCH TIME: 13:00:00(EDT) +...RAWINDSONDE DATE: 09/08/78 FIGURE 41. M-Units Data Comparison of Rawindsonde No. 2 and Sonde No. 15 LAUNCH TIME: 13:02:18(EDT) -... DROPSONDE No. 15 CAPE HATTERAS FIGURE 42. Expanded M-Units Data Comparison of Rawindsonde No. 2 and Sonde No. 15 LAUNCH TIME: 13:02:18CEDT) -.. DROPSONDE No. 15 +...RAWINDSONDE LAUNCH TIME: 13:00:00(EDT) FIGURE 43. N-Units Data Comparison of Rawindsonde No. 2 and Sonde No. 15 Meteorological Data for Sonde No. 15 Using Period Data Generated by Bendix RDSRU in P-3C and NAVAIRDEVCEN Algorithms FIGURE 44. FIGURE 45. Meteorological Data for Sonde No. 15 Using Bendix RDSRU Laboratory Generated Period Data and NAVAIRDEVCEN Algorithms DATE: 09/08/78 LAUNCH TIME: 13:02:18(EDT) -...BENDIX LAB. No. 15 CAPE HATTERAS +...NADC LAB. No. 15 LAUNCH TIME: 13:02:18CEDT) Temperature Comparison of Bendix RDSRU Laboratory Data (Figure 45) and NAVAIRDEVCEN Processed Data (Figure 31) for Sonde No. 15 FIGURE 46. LAUNCH TIME: 13:02:18(EDT) -...BENDIX LAB. No. 15 CAPE HATTERAS LAUNCH TIME: 13:02:18CEDT) DATE: 09/08/78 Humidity Comparison of Bendix RDSRU Laboratory Data (Figure 45) and NAVAIRDEVCEN Processed Data (Figure 31) for Sonde No. 15 +...NADC LAB. No. 15 FIGURE 47. LAUNCH TIME: 13:02:18CEDT) -...BENDIX LAB. No. 15 +...NADC LAB. No. 15 LAUNCH TIME: 13:02:18(EDT) FIGURE 48. M-Units Comparison of Bendix RDSRU Laboratory Data (Figure 45) and NAVAIRDEVCEN Processed Data (Figure 31) for Sonde No. 15 FIGURE 49. Expanded M-Units Comparison of Bendix RDSRU Laboratory Data (Figure 45) and NAVAIRDEVCEN Processed Data (Figure 31) for Sonde No. 15 LAUNCH TIME: 13:02:18(EDT) -..BENDIX LAB. No. 15 LAUNC +...NADC LAB. No. 15 LAUNC LAUNCH TIME: 13:02:18CEDT) FIGURE 50. N-Units Comparison of Bendix RDSRU Laboratory Data (Figure 45) and NAVAIRDEVCEN Processed Data (Figure 31) for Sonde No. 15 FIGURE 51. Humidity Resistance Network in Dropsonde Electronics TABLE I ## KEY WEST DROPSONDE IDENTIFICATION AND LAUNCH INFORMATION | Winds Aloft
at Launch
(Speed/Dir) | 24 kt/229° | 28 kt/235° | 25 kt/235° | 24 kt/225° | 23 kt/192° | 25 kt/220° | 24 kt/199° | 24 kt/214° | 24 kt/208° | |---|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | Outside
Temp.
at Launch | ວູ0 | o°c | ວູ0 | ٥,0 | -1°C | -1°C | -1°C | -1°C | -1°C | | Indicated
Air Speed
(in kt) | 250 | 250 | 250 | 250 | 192 | 192 | 190 | 188 | 185 | | Altitude
at Launch
(in ft) | 12330 | 12344 | 12406 | 12419 | 12377 | 12364 | 12326 | 12344 | 12326 | | Location
at Launch
(Lat/Long.) | 24°24'24"N
81°48'18"W | 24°25'34"N
81°48'27"W | 24°24'43°N
81°48'33"W | 24°24'24"N
81°48'08"W | 24°24'18"N
82°05'43"W | 24°22'07"N
82°05'57"W | 24°22'23"N
82°05'53"W | 24°22'57"N
82°06'49"W | 24°23'30"N
82°06'46"W | | Meteorological
Electronics
Manufacturer | JMR | JMR | Honeywell | JMR | Honeywell | JMR | Honeywell | JMR | JMR | | RF
Channel
Number | 14 | 16 | 14 | 16 | 16 | 12 | 16 | 12 | 14 | | Sonde
Serial No. | 01 | 02 | 60 | 90 | 05 | 07 | 90 | 80 | 03 | | Launch
Time | 18:10:29Z | 18:54:24Z | 19:09:40Z | 19:34:04Z | 15:42:04Z | 15:56:142 | 16:14:212 | 16:26:382 | 16:39:062 | | Date of
Launch | 16 Feb 78 | 16 Feb 78 | 16 Feb 78 | 16 Feb 78 | 17 Feb 78 | | Drop
Number | н | 2 | ന | ⊅ | Ŋ | 9 | 7 | 80 | 6 | NADC-79194-30 TABLE II . KEY WEST DROPSONDE DEPLOYMENT INFORMATION | Drop
Number | Date of
Launch | | Launch
Time | Surface
Pressure
(in mb) | Signal
Level
(in microvolts) | %
RFI | Splash
Time | Deployment Duration (min:s) | |----------------|-------------------|----|----------------|--------------------------------|------------------------------------|----------|----------------|-----------------------------| | - | 16 Feb 78 | 78 | 18:10:29Z | 1016.3 | 30 | 0 | 18:16:542 | 6:25 | | 2 | 16 Feb | 78 | 18:54:242 | 1015.9 | 30 | 10 | 18:56:142 | 1:50 | | æ | 16 Feb | 78 | 19:09:402 | 1015.6 | 287,30 | 0 | 19:15:042 | 5:24 | | 4 | 16 Feb | 78 | 19:34:04Z | 1015.2 | 30 | 10 | 19:39:43Z | 5:39 | | 5 | 17 Feb | 78 | 15:42:04Z | 1017.9 | Н | 5 | 15:48:212 | 6:17 | | 9 | 17 Feb | 78 | 15:56:14Z | 1017.9 | 30+ | 0 | 16:02:352 | 6:21 | | 7 | 17 Feb | 78 | 16:14:212 | 1017.9 | 18-22 | 20 | 16:20:372 | 6:16 | | ∞ | 17 Feb | 78 | 16:26:382 | 1017.7 | 30+ | 0 | 16:32:43Z | 6:05 | | 6 | 17 Feb 78 | 78 | 16:39:16Z | 1017.7 | 1-2 | 0 | 16:45:272 | 6:11 | | | | • | | | | | | |-------------------|-------------------------------|--------------------|--------------------|---------------------------------|----------|-----------------------------------|------| | | No | ise prio | r to | RF Activati | on | | | | | &9 % 09 % 81 | 1 120274 | 131209 | 9917⁄4 104843 | | 102455 085672 | | | | 56 8.0 8 5729 | | | 282399,2298 45 | | 213647.200609 | | | | 699 /1 71 8/ 9 | 9 20 7/3 88 | | 1 <i>77</i> 949, 1 85138 | | 2 <i>1</i> 4239 <i>,2</i> 78779 | | | 2 82 | 989 • 21/0 099 | | 193128 | 138478.180409 | | 2234 89 . 2379 68 | | | 158 | 218 ,2 49169 | , , | | <i>3718</i> 18. <i>21</i> 9999 | | 2 <i>28</i> 398.1 <i>2</i> 9309 | | | 166 | 33 2, 167 7 61 | | | 281079 . 33619 <i>9</i> | | 187129/293248 | | | 344 | Z70.2 <i>4</i> 0015 | | ··290699 | 28 <i>98</i> 99,26 <i>5</i> 499 | | 209 <i>3</i> 29 • 27 <i>4</i> 338 | | | 28 5 | 108/169269 | | 184048 | 239619 <i>,2</i> 28581 | | 209998,264159 | | | 182 | 8 <i>27</i> • 261 <i>2</i> 49 | 9 1.677 <i>8</i> 1 | .419809 | 1767 74, 289889 | | 228511,289925 | | | <u> 34</u> 2 | <u>326.387488</u> | <u>6 290344</u> | 1.226708 | <u>65849,</u> 066314 | | 108867.067918 | | | 54 3 | 48.067051 | 127019 | 0.067178 | 55978,068265 | | 152729,067716 | | | 563 | 54.069469 | 152627 | .067361 | 56183.069756 | | 142374.067803 | | | , , 562 | 11.071118 | 153138 | .067593 | 56068.071229 | | 152788.068009 | | | entact <u>563</u> | 34,072208 | 62781 | 067619 | 73300.072581 | | 61230.068237 | | | . 1.7 | 00.073308 | | 067707 | 55893.07378 | | 152957.06844 | | | | 44.073985 | |
.067775 | 56096.074475 | | 152603.068609 | | | | 07.074698 | | 3.067728 | 56358.075251 | | 152801.068371 | | | 559 | 23.075185 | 153009 | 3.067988 | 56279.075858 | | 152867.068281 | | | 558 | 33.075541 | 152983 | 3,068443 | 56427.076329 | | 152544.06823 | | | | 87.075841 | 153001 | 068528 | 56196.077206 | | 152754.068259 | | | 559 | 74.076269 | 152916 | .068617 | 53207.077003 | | 153190.068304 | | | 559 | 84.076801 | Contact 152458 | 3.068888 | 56473.077001 | | 152857.068156 | | | 562 | 72.077424 | Make 152778 | 3.068908 | 56103.077317 | | 153078.068273 | | | ntact 550 | 58+077604 | 61485 | 068986 | 56031,077449 | | 61014.068472 | | | * +2 | <i>5</i> 2.077881 | | 068949 | 56122.077719 | | 60928.068518 | | | 563 | 87.078074 | Contact 61514. | 076435 | 55975.077911 | | 61004.068688 | | | | 91.078138 | DICAR | 3.090158 | 56071.077982 | · | 152721.068719 | | | 563 | 88.078359 | 152677 | 7.069468 | 56128,078248 | | 152896.068732 | | | 551 | 48,078453 | Barg-, 152977 | 7,06973 | 56038.078203 | | 153058.068947 | | | 560 | 45+077849 | is on 152681 | 069558 | 56528,079131 | | 152686.069148 | | | 557 | 53.078256 | the 152803 | 3.06944 | 56361.078899 | | 152856.069564 | | | | 43.078475 | [nsu-] 15303(| ,069161 | 56008.078379 | | 152718,069829 | | | | 12.079224 | 1.4.4. | 7.069523 | 55949.078323 | | 152668.069507 | | | 563 | 31.07885 | (152598 | 3,070121 | 55915.078576 | | 153163.069484 | | | | 44.078224 | 153017 | 7.069966 | 56441.078921 | | 152818.069504 | | | #41 <u>560</u> | 59.078421 | 60988 | 069243 | 56315.07885 | • | 61465.069657 | | | | 54,078915 | | 069086 | 55978.078081 | | 61211+069208 | | | | 67,078899 | | 069258 | 55956.078521 | | 152778.068717 | | | | 04.07882 | | 3.069374 | 56333.078996 | | 152837.068835 | | | 559 | 83,078171 | 153013 | 3.069221 | 56441.078961 | | 153123,069143 | | | | 41.078355 | 152914 | 1.069138 | 54325.079012 | | 152579.069433 | | | 560 | 16.078584 | 152768 | 3.068836 | 56373.079115 | | 152883,069718 | | | | 16,078674 | | 2,069082 | 56130.078765 | | 152703,069875 | | | 534 | 49.078748 | 152969 | 7,069269 | 55992,07859 | | 152466.069804 | | | | 04,079243 | | 3,069451 | 56048.078091 | | 153068,069884 | • | | | 28.079437 | | 7.069747 | 55964.078009 | | 152948.07006 | | | | 47.079198 | | 3.069818 | 55838.078428 | | 152884,069944 | , , | | | 62.079144 | | 0.069901 | 55783,078454 | | <u> 68168.070219</u> | Cont | | | 47,07901 | | 070268 | 55175.078411 | | 67868.070101 | No. | | | 25.078898 | | 070425 | 56141.078674 | | 68025.070064 | | | | 31.07891 | | 070805 | 55998,078538 | | 71518,070226 | | | 1 | A | 4 | A | | \ | | | | Reference | Temperature | e Pressure | Humidity
Period | 1 Complete +00 | millis | econd Data Cycle | | | | Period | period | | | | | | TABLE III - Sample of Laboratory-Measured Period Data for Sonde No. 1 | NADC- | 7 | ۵ | 1 | 0/ | -30 | |-------|---|---|---|----|-----| | NADU- | / | ッ | 1 | 7- | OU | | | NIDO 751 | 74 30 | | |---|------------------------------------|------------------------------------|---------------------------------| | 56259 - 2 | 71700 | 638.8 ← Contact #43 | 67828 | | 56253.1666667 | 77446 | 647.8 | 6 8624 | | 5 61 98 | 78651.1866667 | 636,6 | 69 490 | | 56175.5 | 78774,1866667 | 665.8 | 70041.8333333 | | 56112.6 | 78390.3333333 | 674.8 | 69793 | | 55148.1 666667 | 78109.3333333 | 58 4 | 69836 _. | | 56253.666667 | 77621.6666667 | 693.2 | 69860.1566667 | | 56191.3333333 | 77000.4 | 702.8 | 68572.3333333 | | 56203.3333333 | 76338 | 711.8 | 67009.2 | | 56239.8333333 | 76252.6 | 721.2 | 65811.6556567 | | 56276.3333333 | 76234.2 | 730.6 | 68594 | | 56156.8333333 | 76325.5 | 740.2 | 69729.3333333 | | 56144.2 | 76275 | 749.4 | 69101.1666667 | | 56248,1666667 | 76436.1666667 | 759.4 - Contact #30 | <u> </u> | | 54328,5 | 76136.5 | 769 | 68509,8333333 | | 56242.3 | 75713 | 778.6 | 68239.5 | | 56262.8333333 | 75704.6666667 | 788 | 68985 | | 56349+166 666 7 | 75402 | 798.2 | 70518 | | 56311 | 74851.8 | 807.8 | 72342.8 | | 56322 * | 74249 | 817.8 | . 73911.8333333 | | 56458 | 73945.5 | 827.8 | 74031.5 | | 56355.3333333 | 73535.1666667 | 837,5 | 74518.4 | | 56410 | 73397.8333333 | 847.6 | 90134.3333333 | | 56421.6666687 | 73184.8333333 | 857,8 | 116406.5 | | 56436,1666667 | 73175.8333333 | 867.8 | 172064,3333333 | | Averaged Reference Periods (in hundicaths) of microseconds) | Averaged
Temperature
Periods | Absolute Pressure Levels (in mbar) | Averaged
Humidity
Periods | | TARE TIL // | 051 15500000000 | | • | TABLE IV - 4051 MICROCOMPUTER LISTING OF AVERAGED PERIOD VALUES FOR SONDE NO. 1 TABLE V (a) ## KEY WEST DROPSONDE DEPLOYMENT AND SIGNAL RECEPTION RESULTS | Dropsonde Signal
Comments | Good audio signal - Only
launch that was able to be
processed in its entirety | Signal could not be processed since it was erratic and had too many amplitude variations - Three data gaps existed totalling about 20 s - Signal only lasted for 30 s maximum between gaps | Very poor S/N ratio caused signal to be unprocessable - Signal had many amplitude and frequency variations - Only 2 or 3 tones audible - Thermistor was inoperable and hygristor was probably bad, since its output was very noisy and contained noise spikes at 150 Hz | Good audio signal and commutation was maintained - Data was processable, except for a lack of the temperature sensor - Thus, the humidity equation, which is temperature-dependent, could not be solved - Two short RF dropouts (2-3 s each) occurred | Very poor S/N ratio caused signal to be unprocessable - Signal was noisy and erratic and several data gaps existed - A suitable triggering window for processing purposes was unable to be obtained | |---|---|--|---|---|---| | Deployment Comments | Good launch - No deployment
problems | Drogue chute separated from sonde 85 ms after start of launch - Main chute did not deploy - Total deployment time to splash was 1 min, 50 s | Sonde was tumbling and drogue chute separated from sonde 120 ms after start of launch - Thermistor and hygristor were inoperable | Good launch - No deployment
problems, except for an
inoperable thermistor | Good launch - No deployment
problems | | Total Time for
Drogue Chute to Fully
Open (in ms) | 95 | 75 | | 85 | 150 | | Total time for
Wind Flap to
Release (in ms) | 55 | | 20 | 40 | 45 | | Drop
Number | н | 2 | ന | 4 | ιO | # KEY WEST DROPSONDE DEPLOYMENT AND SIGNAL RECEPTION RESULTS | | | NADC-79194-30 | | 0.1 | |---|---|---|--|--| | Dropsonde Signal
Comments | Thermistor was inoperable - Marginal S/N ratio caused signal to be processable only about 50% of the launch - Signal was espe- cially noisy during first half of the launch | No temperature sensor - Marginal S/N ratio caused signal to be unprocessable - Poor audio - Could not obtain a suitable triggering window for processing | Signal could not be processed because S/N ratio was marginal, commutation rate was not steady, and synchronization could not be maintained - Signal was very audible, however | Signal could not be processed due to a marginal S/N ratio and due to the absence of a suitable triggering window | | Deployment Comments | Good launch - No deployment
problems, except for a lack
of a thermistor | Thermistor was lost at beginning of launch - Timer mechanism and drogue chute separated from sonde 175 ms after start of launch - Timer and drogue subsequently separated from each other - Main parachute bag first appeared at the 210 ms mark and the main chute was fully deployed 385 ms after the start of launch | Extremely late deployment - Wind flap may have hung up as a result of the orientation of the sonde in its sonobuoy launch container and its orientation in relation to the resultant airstream direc- tion upon launch | Good launch - No deployment
problems . | | Total Time for
Drogue Chute to Fully
Open (in ms) | 160 | 1.35 | 1000 | 145 | | Total time for
Wind Flap to
Release (in ms) | 55 | 65 | 006 | . 65 | | Drop
Number | 9 | 104 | ∞ | 6 | KEY WEST: LAT. 24
des 24 min N, LONG. 81 des 48 min W LAUNCH DATE: 02/16/78 LAUNCH TIME 18:10:29Z SPLASH TIME 18:16:54Z SURFACE PRESSURE(mb)=1016.3 SONDE NUMBER : | • | | | | | | | |----------------|--------------|-------|----------|------------------------------|-------|------------| | PRESS. | ALTITUDE | TEMP. | HUMIDITY | N | Ħ | GRAD, | | n b | feet | des.c | %rh | units | units | N/1000 ft. | | 638.8 | 12306 | 15.96 | 26 | 193 | 784 | 0.00 | | 647 . 8 | 11951 | 6.41 | 30 | 194 | 768 | -3.06 | | 656.6 | 11607 | 4.66 | 34 | 198 | 755 | -10,69 | | 665.8 | 11252 | 4.47 | 36 | 201 | 741 | -9,49 | | 674,8 | 10909 | 4.86 | 35 | 203 | 727 | -6,81 | | 684.0 | 10561 | 5.32 | 35 | 206 | 713 | -7,66 | | 693.2 | 10218 | 6.20 | 35 | 209 | 699 | -7,60 | | 702.8 | 7863 | 6.96 | 30
30 | 209 | 683 | -1.69 | | 711.8 | 7003
9535 | 7,96 | 23 | 208 | 666 | 2,99 | | 721.2 | 7333
9195 | 8.16 | 22 | 210 | 652 | -5.73 | | 730.6 | 9175
8858 | 8.27 | 30 | 217 | 642 | -20.03 | | 740.2 | 8518 | 7.89 | 35 | 222 | 631 | -15,15 | | 749.4 | 8196 | 7.94 | 33 | 224 | 617 | -4,15 | | 759.4 | 7849 | 7,91 | 30 | ery ery err
alle alle sud | 602 | -3,62 | | 769.0 | 7520 | 8.52 | 29 | 227 | 588 | -7.57 | | 778.6 | 7194 | 8,99 | 29 | 230 | 575 | -7.08 | | 788.0 | 6877 | 9.05 | 32 | 234 | 564 | -13.40 | | 798,2 | 6538 | 9.70 | 37
37 | 240 | 554 | -17.86 | | 807.8 | 6221 | 10.50 | 44 | 247 | 546 | -22.67 | | 817.8 | 5895 | 11.52 | 48 | 2 53 | 536 | -18,33 | | 827,8 | 5571 | 12.34 | 48 | 257 | 524 | -10.81 | | 837.6 | 5258 | 12.82 | 49 | 261 | 513 | -12.05 | | 847.6 | 4941 | 13.18 | 62 | 273 | 510 | -38.71 | | 857.8 | 4620 | 13,59 | 74 | 284 | 506 | -35.46 | | 867.8 | 4309 | 13.64 | 83 | 294 | 501 | -30,72 | | 878.2 | 3989 | 14.11 | 86 | 300 | 492 | -19.77 | | 888.6 | 3671 | 14.86 | 88 | 307 | 483 | -20,51 | | 898.6 | 3369 | 15.98 | 87 | 312 | 473 | -16.56 | | 909.0 | 3057 | 16.47 | 84 | 314 | 460 | -6.03 | | 919.6 | 2743 | 17.39 | 84 | 319 | 451 | -18.20 | | 928.8 | 2472 | 17.91 | 85 | 324 | 443 | -17.72 | | 940.4 | 2134 | 18.42 | 81 | 326 | 428 | -5.19 | | 951.0 | 1828 | 19.26 | 81 | 331 | 419 | -17.92 | | 961.6 | 1524 | 19,66 | 86 | 341 | 414 | -31.51 | | 972.4 | 1218 | 20.27 | 90 | 350 | 408 | -28.21 | | 983.0 | 920 | 21.16 | 86 | 352 | 396 | -8,75 | | 994,2 | 608 | 21,97 | 85 | 357 | 387 | -16.72 | | 1004.8 | 315 | 22.51 | 83 | 360 | 375 | -9.26 | | | | | | | | | TABLE VI - NAVAIRDEVCEN PROCESSED METEOROLOGICAL DATA FOR SONDE NO.1 AT KEY WEST NADC-79194-30 KEY WEST RAWINDSONDE:LAT.24 des 35 min N.LONG.81 des 42 min W LAUNCH DATE: 02/16/78 LAUNCH TIME 19:05:00Z SURFACE PRESSURE=1016 | PRESS. | ALTITUDE | TEMP'. | YTIGIMUH | И | Ħ | GRAD. | |--------|----------|--------|----------|-------|-------------|------------| | σin | feet | des₊c | %rh | units | units | N/1000 ft. | | 640.0 | 12250 | 2.20 | 55 | 200 | 788 | 0.00 | | 650.0 | 11856 | 3.40 | 44 | 200 | 769 | 1.00 | | 661.0 | 11429 | 3.80 | 49 | 205 | 753 | -12.11 | | 671.0 | 11045 | 4.30 | 44 | 206 | 736 | -2.19 | | 682.0 | 10628 | 5.30 | 24 | 201 | 711 | 12.17 | | 693.0 | 10217 | 6.40 | 14 | 199 | 690 | 3.32 | | 704.0 | 9811 | 7.40 | 14 | 202 | 673 | -6.16 | | 715.0 | 9410 | 7.70 | 13 | 204 | 6 56 | -6,08 | | 730.0 | 8872 | 7.50 | 19 | 211 | 637 | -13.06 | | 742.0 | 8447 | 7.50 | 30 | 220 | 626 | -21.30 | | 753.0 | 8063 | 7.50 | 19 | 218 | 605 | 6.84 | | 765.0 | 7648 | 8.70 | 18 | 221 | 588 | -6.81 | | 777.0 | 7240 | 9.00 | 24 | 227 | 575 | -15.80 | | 791.0 | 6769 | 9.30 | 45 | 242 | 567 | -32.59 | | 803.0 | 6371 | 10.60 | 51 | 250 | 556 | -18.75 | | 815.0 | 5978 | 11.50 | 49 | 253 | 540 | -8.45 | | 827.0 | 5589 | 12,20 | 64 | 267 | 535 | -34.57 | | 839.0 | 5205 | 12.80 | 70 | 275 | 525 | -22.12 | | 855.0 | 4700 | 13.70 | 72 | 283 | 508 | -14.80 | | 867.0 | 4326 | 14.30 | 76 | 290 | 498 | -19.23 | | 880.0 | 3925 | 14.60 | 81 | 298 | 487 | -20.80 | | 893.0 | 3530 | 15.80 | 83 | 307 | 476 | -21.64 | | 906.0 | 3139 | 16.70 | 79 | 310 | 460 | -6.82 | | 921.0 | 2693 | 17.20 | 78 | 314 | 443 | -9.76 | | 935.0 | 2283 | 17.70 | 76 | 318 | 427 | -8.78 | | 948.0 | 1906 | 19.10 | 76 | 325 | 417 | -20.02 | | 961.0 | 1533 | 20.00 | 83 | 339 | 412 | -36.45 | | 975.0 | 1137 | 20.90 | 85 | 348 | 402 | -23.11 | | 992.0 | 661 | 22.80 | 80 | 355 | 387 | -14.50 | | 1006.0 | 274 | 25.00 | 75 | 361 | 375 | -16.89 | | 1016.0 | 0 | 26,40 | 71 | 365 | 365 | -14,30 | TABLE VII - KEY WEST RAWINDSONDE METEOROLOGICAL DATA ### TABLE VIII DROPSONDE DESIGN MODIFICATIONS RECOMMENDED FROM KEY WEST TEST RESULTS ### TIMER MECHANISM - 1. Machined parts. All sharp edges were removed from machined parts in timer mechanism. - 2. Grommets placed in slots that nylon rope passes through. - Redesigned release latch lock spring to allow more positive lock. - 4. Sear redesigned, positively coupled to timer. - 5. Knot tied in main cord to anchor drogue parachute attachment at centerpoint of line. - 6. Government specification 500# test nylon parachute cord utilized in place of conventional type 500# test cord. - 7. Spring (airstream release) was replaced with a heavier spring. ### CANNISTER HOUSING Criss-crossed wax nylon cord attached to end of dropsonde above sensors. ### ANTENNA HOUSING - 1. Edges of fiberglass antenna housing were rounded to prevent the possibility of parachute line being severed. - 2. 1/2 in. water drain holes placed around base diameter of antenna housing. - 3. Antenna design changed by NADC revision (1) ### ANTENNA PLATFORM - 1. Battery plug moisture cover installed. Cam on battery plug redesigned to work w/moisture cover. - 2. O-ring seal placed around antenna platform for seal between it and housing cannister. ### TABLE VIII (cont) ### INSTRUMENT PACKAGE - 1. 50% duty cycle incorporated in transmitter. - 2. Hygristor mount changed to allow easier installation without distortion. - 3. Thermistor mount changed to tubelets with accessible solder points to allow replacement in field. - 4. Recess sensor mount 1 inch further into sonde tube. ### SAFETY COVER Design changed to allow easier removal. | TABLE IX(a) | WARREN GROVE DEPLOYMENT AND RECOVERY RESULTS | |-------------|--| | * | | | • | | | • | POST-LAUNCH FINDINGS | |--|------------------------| | WARREN GROVE DEPLOYMENT AND RECOVERY RESULTS | LAUNCH FINDINGS | | | * LAUNCH
CONDITIONS | | | DROPSONDE
NUMBER | No damage to dropsonde truck - calculated 5.16 seconds from afr Sonde was accidentally launched seconds a mile down range from communications Good drop - No problems with launchprematurely from aircraft and landed 1000 feet;200 KT flap release to timer mechanism release (from films) Good drop - No problems with launch - 1000 feet; 200 KT 4.98 seconds from air flap release to timer release Drogue chute deployed properly, but timer mechanism failed to operate properly and caused main chute to remain undeployed - Timer was dislodged and main chute was released from canister upon ground impact - Elapsed time from launch to ground impact was 12.42 seconds 1000 feet;200 KT Good drop- No problems with launch calculated 5.28 seconds from air flap release to timer release - Total descent time from launch to ground impact for the main chute was 25 seconds (measured during day of test) 1000 feet; 250 KT No damage to dropsonde Damage to tail end of dropsonde canister upon impact - Discovered a burr on the sear arm of the timer mechanism that made it difficult for the release cam to release the timer - The problem of the timer mechanism hanging up was repeated in the lab, although the burr became more polished with each iteration. No damage to dropsonde sures too great for the drogue chute lines to with- stand | | | | MADG-/3134-30 | | |----------------------|--|---|---|---| | POST-LAUNCH FINDINGS | No damage to dropsonde | No damage to dropsonde | One side of the canister was flattened upon ground impact - Damage to timer included bent retention ears, bent roll pins on 2 of the 3 levers, a deformed base plate, and a slight abrasion on the 500 pound test line - Lab tests found that thumb pressure on the lever nearest the sear could force the cam over the sear, causing premature release of the timer - Tensile strength of chute lines may not be capable of handling the forces at this velocity | bridle line, which was cut 10% at the grommet adjacent to the Rhodes timing unit - This point on the launch envelope may provide preserved. | | LAUNCH FINDINGS | Good drop - No problems with launch -
Calculated 4.68 seconds from air flap
release to timer release | Good drop - No problems with launch-
Calculated 5.28 seconds from air flap
release to timer release | Premature deployment of drogue chute, timer mechanism, and main chute, which ripped away from the canister at a point 5" from the anchor point and 0.32 seconds after launch - Total descent time from launch to ground impact was 11.34 seconds | Drogue chute separated from the timer mechanism shortly after launch, but the timer release was normal (4.50 seconds after air flap release) - Main chute deployment was slow, but normal | | LAUNCH | 1000 feet; 250 KT | 1000 feet; 250
KT | 1000 feet; 330 KT | 1000 feet; 331 KT | | DROPSONDE
NUMBER | ທ | v 9 | 110 | ω | TABLE IX(b) sonde 8 - Main chute bag may not have been tied since it was found separated from the timer. 92 ÷ sequence despite failure of drogue chute, as in drop- | POST-LAUNCH FINDINGS | No damage to dropsonde-
Drogue chute and timer
not recovered - Deployment
functions operated in proper | |----------------------|--| | LAUNCH FINDINGS | Drogue chute separated from
timer 0.13 seconds after launch-
Main chute deploys prematurely
(0.86 seconds after launch) | | LAUNCH
CONDITIONS | 1000 feet; 331 KT | | DROPSONDE
NUMBER | 6 | 111 ### TABLE X ### DROPSONDE DESIGN MODIFICATIONS RECOMMENDED FROM WARREN GROVE TEST RESULTS ### TIMER MECHANISM - Timer removed raised section of timer cam by stoning to insure smooth operation of timer. - 2. Timer place flat washer under each leg of standoffs to insure stability in baseplate holes, also to increase tolerance between baseplate and timer cam lever pin. - 3. Release Plate removed all rough edges and burrs in notched area. - 4. Sear elongate existing hole, such that it prevents any main spring pressure, transmitting through to timer cam pin. Remove all burrs. - 5. Nylon Cord tie knot in main line on bottom of timer to allow more space for drogue chute and a more positive attachment should line be severed. - 6. The use of square knot and a half hitch for more secure joining of two ends of lines. - 7. Battery Plug Line will be tied off to drogue chute and through drogue chute restraining knot in main timer line, in the event of drogue chute separation, battery would be energized by escapement of timer unit. - 8. Drogue Chute a grommet will be placed in loops at attachment point of drogue chute with main timer line being passed through grommet, to cushion shock of Q-force and increase radius of curve around timer line. LABLE XI (a) ## LAKEHURST DEPLOYMENT AND RECOVERY RESULTS | | NADC-/9194-30 | | | | | | | | |---------------------|-------------------------------------|---|--|--|--|--|--|--| | Postlaunch Findings | No damage to dropsonde | Timer mechanism was found to be jammed in the sonde tube | Air tab was found bent at a 45° angle – No further damage to dropsonde | Air tab was unable to be recovered -
No damage to dropsonde | One end of the knot that ties the drogue chute to the 500 lb test line was frayed slightly | | | | | Launch Findings | Good drop - No problems with launch | Timer mechanism failed to release, causing main chute to remain undeployed - Drogue chute did not completely open until 0.23 s, 0.1 s later than the other successful drops | Good drop - No problems with launch | Good drop - No problems with launch | Good drop - No problems with launch | | | | | Launch | 1000 ft, 275 kn | 1000 ft, 275 kn | 1000 ft, 300 kn | 1000 ft, 300 kn | 1000 ft, 325 kn | | | | | Dropsonde
No. | 1 | 7 | e | 7 | 5 | | | | ### TABLE XI (b) | Postlaunch Findings | The main parachute bag separated from the main chute and was unable to be recovered - The main chute's tie line was found to be still intact and unbroken, so the main chute bag must have ripped away | Timer mechanism was discovered to be timed out - Air tab was bent slightly | The bottom of the sonde tube was badly damaged and one side of the tube was crushed - The 500 lb test line was broken in two places under the timer mechanism, but the square knot under the timer was still intact and was pushed toward the Rhodes timer side - The knot by the grommet that connects the drogue chute to the test line was undone and was frayed at the end - Drogue chute bag was badly ripped on one side, starting from the bottom - The dog by the Rhodes timer was sticking and was canted slightly to the right | No damage to dropsonde, except for air tab bent inwards about 20° | |---------------------|--|---|--|--| | Launch Findings | Premature deployment of the timer mechanism and the main chute (within 0.4 s after beginning of launch) - Main chute did deploy properly, however, and the rest of the launch was successful | Drogue chute deployed properly but timer mechanism did not release, causing main chute to remain undeployed | Late release of air tab (0.1 s longer than normal) and late opening of the drogue chute (0.2 s longer than normal) - The drogue chute released from the timer mechanism, which experienced a late release appeared | Good drop - No problems with launch, except for late release of air tab (0.2 s later than normal) and late opening of the drogue chute (0.3 s later than normal) | | Launch | 1000 ft, 325 km | 1000 ft, 345 km | 1000 ft, 350 kn | 1000 ft, 350 kn | | Dropsonde
No. | 9 | 7 | ∞ . | o | TABLE XII LAKEHURST DEPLOYMENT TIMING EVENTS | Total Time for Total Time from Main Chute to Launch to Ground Fully Open (s) | N/A | e did 11.7 | N/A | N/A | N/A | 13.9 | e did 13.1 | e did 10.7 | N/A | |--|--------------|----------------------------|--------|------|------|------|----------------------------|----------------------------|------| | Main Chute to
Fully Open (s) | 5.97 | Main chute did
not open | 5.60 | N/A | 5.64 | 0.38 | Main chute did
not open | Main chute did
not open | 2.99 | | (s) | 5.32 | Timer did not
release | 4.87 | N/A | 5.12 | 0.18 | Timer did not
release | 6.38 | 5.15 | | Drogue Chu <u>te to</u>
Fully Open (s) | 0.14 | 0.23 | 0.13 | 0.12 | 0.13 | 0.14 | 0.17 | 0.32 | 0.42 | | Wind Flap to
Release (s) | 90.0 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 90.0 | 0.16 | 0.24 | | Dropsonde
No. | 1 | 2 | ·
• | 4 | | 9 | 7 | ∞ | 6 | N/A: Not available from films ### TABLE XIII ### TIMER MECHANISM DESIGN MODIFICATIONS RECOMMENDED FROM LAKEHURST TEST RESULTS - a. Release latch fingers extended vertically approximately 1/4 inch. This provides a stop if all dogs are not locked in place. - b. Cover plate slots shape will be changed to allow conformal fit with grommets (to reduce fraying of 500 lb test line). - c. Timer set indicator redesigned for more stable attachment. - d. Flat head screw utilized in top plate to secure latch spring stud in place of present round head. - e. Rivets in place of flat head screws to secure wing to cover plate. - f. Sear mount raised and sear tip lengthened (to prevent premature release of timer mechanism). TABLE XIV CAPE HATTERAS LAUNCH CONDITIONS AND DEPLOYMENT TIMES | •
H | Launch
Location | (Lat, Long) | 35°09' N,
75°18' W | |-----------------------------------|--------------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | , -
-
-
-
-
-
- | Launch
Altitude | (K ft) | 15.0 | 14.5 | 14.5 | 14.5 | 14.5 | | Total | Deployment
Time | (Min:s) | 6:34 | 7:10 | 6:12 | 6:43 | 7:05 | | 1001 | optasn
Time | (Local EDT) | 11:35:16 | 11:57:01 | 12:19:43 | 12:46:13 | 13:09:23 | | Tournet | Time | (Local EDT) | 11:28:42 | 11:49:51 | 12:13:31 | 12:39:30 | 13:02:18 | | ŭ | Channel | No. | 16 | 12 | 14 | 16 | 14 | | Dropeonde | Serial | No. | 11 | 12 | 13 | 14 | 15 | | | Launch | No. | H | 2 | e e | 4 | 2 | TABLE XV MISCELLANEOUS CAPE HATTERAS DROPSONDE AND LAUNCH INFORMATION | Hygristor
Lock-in
Resistance
(Kohms) | 10.490 | 10.490 | 10.490 | 10.490 | 10.490 | |--|---|--------|--------|--------|--------| | Thermistor
Lock-in
Resistance
(Kohms) | 13.524 | 13.651 | 13.347 | 13.660 | 13.629 | | Temperature
at Launch
Altitude
(°C) | ٠.
د | | 5 | 5 | 5 | | Surface
Temperature
(°C) | 27 | 27 | 27 · | 27 | 27 | | Surface
Pressure
(mbar) | 1014.6 | 1014.6 | 1014.6 | 1014.6 | 1014.6 | | Signal
Waveform | рооб | Good | Good | Good | Good | | ARR-52
Receiver
Signal
Level (µv) | 30 (max level) Good - occasional signal dropout | 30 | 30 | 30 | 30 | | Launch
No. | П | | က | 7 | 2 | TABLE XVI ### P-3C METEOROLOGICAL DATA OUTPUT FROM BENDIX RDSRU FOR SONDE NO. 15 | as iinte | ENTIFIAB | LESCONTA | ACTS. E | NTER SU | IRFA _ | |---------------|------------------------|-------------------------|----------------|-----------------------
--| | | SURE (XX | | | | | | 1015.57 | | | | and the second second | | | | E. TIM | | | | | | | 08 13:00 | | | | | | 10:02: | 001000 | Section and the Section | recon .es | 01.10100 | A STATE OF THE STA | | ALT. | PRESS. | _IEMP. | HUM. | N | · | | M | | | | | <u>-</u> | | 434 | 1010.4 | 26.6 | 81 | 384 | .3 | | 91 / / | ¹ | | | | | | 137 | 999.2 | 26.2 | 7.9.1 | 3.76 | | | 218 | 989.6 | 25.8 | 62.1. | 347 | | | 305 | 979.4 | 25.4 | JE 16274 | 343 | | | | 969.2 | | | | | | 4.81 | 959.0. | 24.12 | 65 | 337 | | | 572 | 948.6 | 23.4 | . 66 | 333 | | | | 938.6 | | | | | | | 938.6 | | | | | | | 928.4 | | | | | | | 918.6 | | | | | | | 908.8 | | | | | | | 899.0 | | | | | | | 889.2 | | | | | | 1200. | 879.2. | - (29.9) . | 81 | 371 | | | | 869.8 | | | | | | 1381 . | | | | | 44 | | | 850.4 | | | | | | | 841.0 | | | | | | | 831.4 | | | | | | | 822.0 | | | 241 | 5 | | 16 | المستعدد المستعدد السد | | | | · · · · · · · · · · · · · · · · · · · | | END | | | أعشعار بالأساس | | | | | R | T | P | 11 | TIME | . · | |-----|------------|--------------------|--|---|---------------|-----------------| | | 7353 | 9299 | 16610 | 8837. | . 0 | , | | | 7354 | 9547 | 14991 | 8988 | 10 | - | | | 7343 | 10358 | 9191 | 9214 . | . 56 | | | | 7338 | 10610 | 8077 | .9541 | 140 | · · | | | 7337 | 10626 | 8025 | 11486 | 240 | | | | 7335 | 10562 | 11232 | . 11901 " | 342 | | | | .a. 7.335° | 10505 | 8024 | 12240 | 438 | | | | 7336 | 10435 | 8953 | 13016 | 541. | | | 414 | 7333 | 103345 | 8315 | 13048 | 649 | | | 7 | 7337 | 1.0236 | 8031 | 11933 | 744 | | | 1 | 7339 | _10144 | 8.970 | 11421 | 531 844. | | | - | | 10055 | | | | | | | 7342 | 10000 | . 10118 . | 10089 | 1019 | | | | 7342 | .9971 | 8057 | 9928 | 1051 | | | | 7350 | 9949 | 9904. | 9891 | 1070 | | | | 7.343 | 9874 | · 803.0 | 9685 | 1154 | | | | 7340 | 98 <mark>07</mark> | ·=: 8035 | 9621 | : 1254 | | | | 7348 | 9745 | F. 9200 | 9937 _ | | <u></u> | | | 7348 | 9693 | 3. 9017 . | 8992 | 1464 | | | | 7344 | 9637 | 8040 | 8894 | 1560 | | | | . 57348. | 9580 | 8038 | 8896 | 1660 | | | | 7343 | . 9515 | 8868 | 8880 | 1766 | · | | | 7349 | 9474 | Z-11330 | 8861 | 1854 . | | | | 7352 | 9470 | <u> </u> | | . 1897 | | | | 7348 | 9431 | 8100 | 8876, ₋ | 1949 | | | | 7348 | 93655 | 8247 | 8865 | 2052 | | | | 7347 | io. 9332 | 8036 | 8917 | 2144 | | | 1 | . 7348 | 9285 | 8037 | 8826 | 2243 | <u>-</u> | | | | 9235 | | 87.35 | | | | | | 9230 | | | | | | | | 9229_ | | | | 4 | | ٠ | | 9234 | | | | 1.1 | | | 7348 | 9247 | 8069 | 9885 | 2529 | | | | .* | 9266 | | | | | | | *** | 9257_ | | | | | | | | 9225 | et a company of the c | | | | | | | 91.87 | | | | 1 | | - | | - (855I) | ** | | | ; | | | | 9115_ | | | | | | 1 | | 9070 | | a contract of the | * | 1 | | | | 9014 | | | | . , | | | 7341 | 8974 | <u>::4_8101_</u> | 12650 | <u>. 3397</u> | | | | | | | | | | TABLE XVII ### TABLE XVIII ### RDSRU REFRACTIVITY LAYER DATA OUTPUT ABOARD P-3C FOR SONDE NO.15 | DATE JIME LAT. LONG. 78:09:08 13:00Z 35:09:00N 075:18:00W SUPERFRACTIVE: G=- 0.026 A 43 .A 137 M 391 .M 398 TRAPPING: G=- 0.109 A 137 .A 218 M 398 .M 381 SUBFRACTIVE: G= 0.193 A 1107 .A 1200 | |
---|-------------| | 78:09:08 13:00Z 35:09:00N 075:18:00W SUPERFRACTIVE: G=- 0.026 A 43 , A 137 M 391 , M 398 TRAPPING: G== 0.109 A 137 , A 2218 M 398 , M 381 SUBFRACTIVE: G= 0.193 | | | SUPERFRACTIVE: G=- 0.026 - A | | | - A 43 .A 137 M 391 .M 398 TRAPPING: G=+ 0.109 A 137 .A 218 M 398 .M 381 | | | - A .43 .A .137 M .391 . M .398 TRAPPING:G = .0.109 A .137 . A218 M .398 . M .381 | | | M 391 , M 398
TRAPPING: G== 0.109
A 137 , A 218
M 398 , M 381
SUBFRACTIVE: G= 0.193 | | | TRAPPING:G## .0.109 A 137 . A. 218 M 398 . M 381 | | | A 137 , A.S. 218 | | | M 1398 , M156381 | | | SUBFRACTIVE: LA GES 0.193 CONTRACTOR DE LA GES 0.193 CONTRACTOR DE LA GES 0.193 CONTRACTOR DE LA GESTA DEL GESTA DEL GESTA DE LA | 1 | | 1 | ~{ } | | - H | 1 | | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | | M 486 , M 560 | | | SUPERFRACTIVE: G=- 0.040
A 1381 , A 4472 | | | Mad 518 - 1. May 521 | | | TRAPPINGE 0.052 | | | | | | M 530 , M 529 | 4 | | TRAPPING: _G=_ 0.088 | | | A 11656 1, Assa1749 11 River 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | M M M M 529 M M 516 R M 1244 A THE MAN TO THE T | | | LA L'ENDIOFEGRADIENT DATA. A INSTRUMENTALIANTE MANTE | | | | | ### TABLE XIX ### NADC-79194-30 TABLE XX ### NAVAIRDEVCEN PROCESSED METEOROLOGICAL DATA FOR SONDE NO. 11 CAPE HATTERAS: LAT 35 des 09 min N, LONG 75 des 18 min W LAUNCH DATE:09/08/73 LAUNCH TIME 11:28:42(EDT) SFLASH TIME 11:35:16(EDT) SURFACE PRESSURE(mb)=1014.6 SONDE NUMBER 11 | PRESS. | ALTITUDE
feet | TEMP.
des.c | HUMIDITY
%rh | N
units | M
units | GRAD.
N/1000 ft. | |----------------|------------------|----------------|-----------------|------------|------------|---------------------| | 575.8 | 14865 | 12.42 | 31 | 177 | 891 | 0.00 | | 584.0 | 14513 | 4,11 | 37 | 179 | 875 | -4.38 | | 592+4 | 14157 | -0.18 | 47 | 183 | 863 | -12,41 | | 600 . 8 | 13805 | -0.93 | 53 | 187 | 849 | -10.86 | | <u> </u> | 13440 | -0.30 | 58 | 191 | 836 | -11.54 | | 618.2 | 13088 | 0.66 | 62 | 195 | 824 | -12,18 | | 627.2 | 12723 | 1.44 | 62 | 178 | 809 | -8.22 | | 636.2 | 12363 | 2.13 | 63 | 202 | 795 | -8.72 | | 644.8 | 12022 | 3,17 | 62 | 205 | 782 | -9.01 | | 653.6 | 11678 | 4.18 | 62 | 208 | 768 | -9.00 | | 662,8 | 11321 | 5.02 | 59 | 210 | 753 | -6.02 | | 671.8 | 10976 | 5.87 | 63 | 215 | 742 | -14,86 | | 681,2 | 10620 | 6.46 | 63 | 218 | 728 | -9,32 | | 690,2 | 10283 | 7,42 | 55 [*] | 218 | 712 | 1,44 • | | 699.6 | 9935 | 8.30 | 55 | 222 | 699 | -10.63 | | 708.8 | 9597 | 9.43 | 55 | 225 | 686 | -10,27 | | 718.0 | 9264 | 10.60 | 50 | 226 | 671 | -2.61 | | 725.4 | 8999 | 10.87 | 49 | 228 | <u> </u> | -6.54 | | 737.0 | 8585 | 12.40 | 27 | 218 | 630 | 23.56 | | 746.6 | 8247 | 12.98 | 28 | 222 | 618 | -11.30 | | 756.4 | 7907 | 13.80 | 28 | 225 | 604 | -8.73 | | 766.0 | 7576 | 14.34 | 27 | 227 | 591 | -6.63 | | 775.6 | 7249 | 15.30 | 28 | 231 | 579 | -11.53 | | 785.2 | 6925 | 16.25 | 27 | 233 | 566 | -7.02 | | 794,8 | 6604 | 17.04 | 24 | 233 | 550 | 0.64 | | 804.6 | 6280 | 17.63 | 21 | 234 | 535 | -2.14 | | 814.8 | 5946 | 18.33 | 21 | 236 | 522 | -8.34 | | 824.6 | 5628 | 18,06 | 26 | 244 | 514 | -22.17 | | 834.6 | 5307 | 17.47 | 48 | 266 | 520 | -68.66 | | 844.6 | 4989 | 17.51 | 53 | 272 | 512 | -20.61 | | 854.8 | 4668 | 17.61 | 63 | 285 | 509 | -38,36 | | 865.0 | 4350 | 17,97 | 71 | 295 | 504 | -32.41 | | 874.8 | 4047 | 18.63 | 74 | 302 | 496 | -23.06 | | 885.2 | 3728 | 19.54 | 68 | 302 | 481 | 0.26 | | 895.4 | 3419 | 20.52 | 64 | 303 | 467 | -4.69 | | 905.6 | 3113 | 20.88 | 65 | 308 | 458 | -16.88 | | 915.8 | 2809 | 21,49 | 63 | 310 | 445 | -5.54 | | 926.2 | 2502 | 22,24 | 62 | 314 | 434 | -13.78 | | 936.6 | 2198 | 22,92 | 62 | 319 | 425 | -15,67 | | 947.2 | 1891 | 23.29 | 6 3 | 324 | 415 | -17.30 | | 957.8 | 1586 | 24,25 | 62 | 329 | 405 | -14.97 | | 968.6 | 1279 | 25.03 | 61 | 333 | 394 | -11.67 | | 979.0 | 986 | 25,64 | 60 | 337 | 384 | -13.25 | | 990.0 | 678 | 26.20 | 60 | 341 | 374 | -15,74 | | 1000.8 | 379 | 26.27 | 80 . | 373 | 391 | -106.19 | | 1011.0 | 99 | 26.54 | 82 | 380 | 385 | -24.46 | ### TABLE XXI ### NAVAIRDEVCEN PROCESSED METEOROLOGICAL DATA FOR SONDE NO. 12 SURFACE PRESSURE (mb)=1014.6 CAPE MATTERAS: LAT 35 des 09 min N. LONG 75 des 18 min W LAUNCH DATE:09/08/78 LAUNCH TIHE 11:49:50(EDT) SPLASH TIHE 11:57:01(EDT) SONDE NUMBER 12 GRAD. N HUMIDITY TEMP, ALTITUDE FRESS. %rh units units N/1000 ft. des.c feet en C 884 0,00 36 181 11,23 14642 531.0 -4.03 44 183 867 3.80 589,8 14267 854 -10.3752 186 13913 0.21 598.2 -11,49 59 191 841 -0.27 13547 607.0 828 -13,70 196 66 0.38 13177 616+0 -7,21 198 814 64 1,12 624.6 12828 -8,73 201 800 64 12482 1.93 633.2 787 -8,77 2.81 204 64 12133 642.0 772 -9.08 3.75 64 208 11763 551,4 759 -8.36 62 211 000.2 11421 669.6 11060 678.6 10718 687.8 10373 4.91 742 -2.1256 211 5,82 728 -6,94 54 214 6.64 -11.93 716 56 218 7,30 -4.41 53 700 219 7.96 **697 4** 10016 686 -5,71 9678 50 221 8.95 706.6 664 14,13 35 216 9321 10.23 716.4 -1.15 217 648 30 10.90 8990 725,6 635 -10,00 31 220 11.66 735,2 8649 -10.10 32 623 224 12.17 8318 744.6 610 -9,53 32 227 7976 12.89 754.4 -8,47 597 32 230 13.60 763.8 7651 -8.88 584 233 32 14.79 773.8 7310 -4.91 30 569 234 6965 15,76 784.0 -0.46235 553 26 16.68 6644 793.6 539 -5.55 25 236 17.35 803,8 6306 -5,1923 238 526 813.4 5992 18.01 517 -20.6418.01 28 245 5667 823,4 -75.83 526 270 54 17.51 5333 833.8 -16.77 516 57 275 17.37 5021 843,6 -25,25 509 284 17.56 63 854.0 4693 -48.98 509 77 300 17.84 4362 864.6 -8,72 497 75 303 4047 18.48 874.8 485 -10.86 73 306 19.36 3716 885.6 470 -2,82 307 69 19.37 3401 896,0 459 -11,06 20.74 68 311 3083 906.6 446 -9,29 66 314 21.49 2767 917,2 -23.43 67 321 439 22.31 928.0 2449 425 -6.01 64 323 23.09 2134 938.8 -17.74 416 65 329 23,66 949,8 1816 406 -16.76 334 24.58 64 1507 960,6 <u>_</u>-8.57 394 25.01 63 337 1194 971.6 -14.39341 384 62 25.80 885 982.6 -60,49 71 359 387 26,40 584 993.4 374 388 -48,69 28.22 274 1004.6 81 ### NADC-79194-30 TABLE XXII ### NAVAIRDEVCEN PROCESSED METEOROLOGICAL DATA FOR SONDE NO. 13 .CAPE HATTERAS: LAT 35 des 09 min N, LONG 75 des 18 min W LAUNCH DATE:09/08/78 LAUNCH TIME 12:13:31(EDT) SPLASH TIME 12:19:43(EDT) SURFACE FRESSURE(mb)=1014.6 SONDE NUMBER 13 | PRESS. | ALTITUDE
feet | TEMP:
des.c | HUMIDITY
%;h | N
units | M
units | GRAD.
N/1000 ft. | |----------------|------------------|----------------|------------------|-------------|-------------|---------------------| | 592.2 | 14166 | 4.16 | 43 | 183 | 863 | 0.00 | | 600.4 | 13822 | 0.99 | 50 | 187 | 850 | -10.63 | | 608.6 | 13481 | 0.30 | 66 | 194 | 841 | -20.16 | | 616.6 | 13153 | 0.53 | 67 | 196 | 828 | -8.30 | | 624.8 | 12820 | 1.26 | 72 | 201 | 816 | -13.55 | | 633.2 | 12482 | 2.10 | 72 | 204 | 803 | -9.66 | | 641.0 | 12172 | 3,14 | 72 | 207 | 792 | -10.28 | | 649.8 | 11826 | 3.82 | 72 | 211 | 778 | -9.37 | | ∆58 .2 | 11499 | 4.65 | 67 | 212 | 764 | -3.40 | | 666.8 | 11168 | 5.55 | 64 | 214 | 750 | -6.03 | | 675.4 | 10840 | 6.51 | 51 | 211 | 731 | 8.41 | | 583.8 | 10523 | 7.58 | 54 | 216 | 721 | -16.17 | | 692.4 | 10201 | 8.42 | 63 | 224 | 714 | -24,14 | | 701.2 | . 9878 | 9.16 | 48 | 219 | 693 | 15.11 | | 710.0 | 9554 | 9.70 | 31 | 213 | 671 | 20.24 | | 718.6 | 9242 | 10.59 | 30 | 215 | 658 | -6.76 | | 727.6 | 8919 | 11.60 | 30 | 217 | <i>64</i> 5 | -7.52 | | 736.4 | 8606 | 12.43 | 30 | 220 | 633 | -10.10 | | 745.4 | 8289 | 13.09 | 30 | 223 | 621 | -8,68 | | 754.6 | 7969 | 13.86 | 31 | 226 | 609 | -9.95 | | 763.6 | 7658 | 14.48 | 30 | 228 | 596 | -6.81 | | 772.8 | 7344 | 15.04 | 31 | 232 | 584 | -11.36 | | 782.0 | 7033 | 15.77 | 31 | 235 | 572 | -9,08 | | 790.6 | 6744 | 16.84 | 29 | 236 | 560 | -4.55 | | 800.0 | 6432 | 17.56 | 27 | 238 | 546 | -4.46 | | 809.2 | 6129 | 18.23 | 23 | 236 | 530 | 4.29 | | 818.6 | 5822 | 18.11 | 28 | 244 | 524 | -25,58 | | 828.0 | 5519 | 17.65 | 54 | 269 | 534 | -80.83 | | 837.6 | 5211 | 17.40 | 60 | 277 | 527 | -26,49 | | 847,0 | 4913 | 17.74 | 59 | 279 | 515 | -8.07 | | 856.4 | 4618 | 18.13 |
61 | 284 | 505 | -14.72 | | 866.0 | 4319 | 18.68 | <u> 51</u> | 287 | 495 | -12,73 | | 875.4 | 4028 | 19.36 | <u> </u> | 304 | 497 | -55,78 | | 885.2 | 3728 | 19.80 | <u> 75</u> | 309 | 488 | -19.27 | | 894.8 | 3437 | 20.21 | 72 | 310 | 475 | -2,35 | | 904.4 | 3149 | 20.89 | <u> </u> | 312 | 463 | -4,79 | | 914.2 | 2856 | 21.80 | <u>56</u> | 315 | 452 | -10.71 | | 924,2 | 2561 | 22,50 | 66 | 320 | 443 | -17.05 | | 934.0 | 2274 | 23.26 | 65
44 | 324 | 433
422 | -13.20
-10.25 | | 944.0 | 1983 | 23.74 | 64 | 327 | | | | 953.8
047 0 | 1701 | 24.41 | 6 4
64 | _331
337 | 413
404 | -16.84
-18.18 | | 963,8
973,6 | 1415 | 25.37 | 61 | აა/
338 | 393 | -6.35 | | 7/3+0
984,2 | 1138 | 26.02
26.52 | | ააი
342 | 382 | -0.35
-11.97 | | 784,2
994.0 | 840
567 | 26.79
26.79 | 61
63 | 349 | აიკ
376 | -25.79 | | 1004,4 | 280 | 40+/7
26+69 | 84 | 347
382 | 375 | -114.15 | | 1 W W ** * ** | 200 | 40+07 | O ** | ಎಐಮ | 370 | - T T -4 + T ? | ### NADC-79194-30 TABLE XXIII ### NAVAIRDEVCEN PROCESSED METEOROLOGICAL DATA FOR SONDE NO. 14 CAPE HATTERAS: LAT 35 des 09 min N. LONG 75 des 18 min W LAUNCH DATE:09/08/78 LAUNCH TIME 12:39:30(EDT) SPLASH TIME 12:46:13(EDT) SURFACE PRESSURE(mb)=1014.6 SONDE NUMBER 14 | | • | | | | | | |----------|----------|----------------|-------------------|-------------|-----------------------------------|------------------------| | PRESS. | ALTITUDE | TEMP. | HUMIDITY | N | M | GRAD. | | din | feet | des.c | %rh | umits | units | M/1000 ft. | | | | | | | | | | 588.0 | 14343 | 7.12 | 36 | 180 | 869 | 0.00 | | 596.4 | 13989 | 2.61 | 44 | 184 | 855 | -10.66 | | 605.0 | 13630 | 1.43 | 54 | 190 | 844 | -15,28 | | 613.6 | 13276 | 1.80 | 63 | 195 | 832 | -15.55 | | 622,2 | 12925 | 2,17 | 60 | 197 | 817 | -5.18 | | 630,8 | 12578 | 2.90 | 63 | 201 | 805 | -11,21 | | 639.4 | 12236 | 3,93 | 63 | 204 | 791 | -9.79 | | 648.4 | 11881 | 4.73 | 63 | 207 | 778 | -8.64 | | 657,2 | 11538 | 5.49 | 63 | 211 | 754 | -9, 80 | | | 11198 | 6.75 | 58 | 212 | 750 | -4,44 | | <u> </u> | | 7,87 | 51 | 212 | 733 | 0,21 | | 675 °C | 10855 | 2,58
8,58 | 52 | 216 | 721 | -11.25 | | 484.0 | 10515 | 0,J0
9,49 | 54 | 220 | 708 | -12,26 | | 693.4 | 10164 | 10,12 | 56 | 225 | 697 | -14.42 | | 702.4 | 9832 | 10,12
10,86 | 40 | 219 | 674 | 18,67 | | 711.8 | 9488 | 11.74 | 30 | 216 | 655 | 9,19 | | 720.8 | 9163 | 12.42 | 31 | 219 | 642 | -9,11 | | 730.4 | 8819 | | 30 | 221 | 629 | -7,38 | | 739.6 | 8493 | 13.50 | 29 | 224 | 615 | -6,92 | | 749.2 | 8157 | 14.09 | 29 | 226 | 602 | -8.41 | | 758.8 | 7824 | 14.83 | 29
29 | 230 | 589 | -9.72 | | 768.4 | 7494 | 15.63 | 30
30 | 234 | 578 | -13,00 | | 778.0 | 7168 | 16.52 | 29 | 236 | 565 | -5.79 | | 787.4 | 6851 | 17.15 | 27
27 | 237 | 549 | -Ž.20 | | 797.4 | 6518 | 17.44 | 47
28 | 241 | 538 | -13.32 | | 807,2 | 6195 | 18.46 | 49 | 252 | 544 | -66.04 | | 817.2 | 5868 | 17.85 | | 275 | 542 | -42.71 | | 827.0 | 5551 | 17.30 | 63 | 284 | 535 | -24,41 | | 836.8 | 5237 | 17.32 | 69
35 | 292
292 | 528 | -26.16 | | 847.4 | 4901 | 17.37 | 75 | 301 | 522 | -28,20 | | 857.2 | 4593 | 17,99 | 80 | 308
201 | 513 | -20.40 | | 867,4 | 4275 | 18.83 | 81 | 308 | 498 | -1.84 | | 377.8 | 3955 | 18.98 | 78
 | 309 | 484 | -1.40 | | 888.0 | 3643 | 19,68 | 74 | | 470 | -3,93 | | 898.2 | 3335 | 20.98 | 68 | 310 | | -0,88 | | 908,6 | 3023 | 21.73 | 54 | 310 | 455
446 | -17.0; | | 919.2 | 2708 | 22.58 | <u>84</u> | 316 | 438 | -23.57 | | 929.4 | 2408 | 23.35 | <u>55</u> | 323 | 424 | -2,78 | | 940,2 | 2093 | 23,89 | 52.
7.7 | 324 | 413 | -12,19 | | 750.8 | 1787 | 24.02 | 63 | 327
77 A | 405 | -20.59 | | 961.4 | 1484 | 25.44 | 62 | 33 <i>4</i> | 405
393 | -2.81 | | 972,4 | 1172 | 26.11 | ⊝ 0
#70 | 336
Tai | <i>ు 7 ప</i>
పొత్ 4 | -17.06 | | 982.4 | 890 | 27,01 | 59
70 | 341
348 | 374 | -17,18 | | 994,2 | 562 | 27.75 | <u> </u> | აქ8
373 | <i>a∕⇔</i>
386 | -85.82 | | 1004,6 | 269 | 27,02 | 77 | د⁄د | ಎಡಡ | That said to that also | ### NADC-79194-30 TABLE XXIV ### NAVAIRDEVCEN PROCESSED METEOROLOGICAL DATA FOR SONDE NO. 15 CAPE HATTERAS: LONG. 35 des 09 min N LAT. 75 des 18 min W LAUNCH DATE:09/08/78 LAUNCH TIME 13:02:18(EDT) SPLASH TIME 13:09:23(EDT) SURFACE PRESSURE(mb)=1014.6 SONDE NUMBER 15 | PRESS. | ALTITUDE
feet | TEMP.
des.c | HUMIDITY
%rh | N
units | M
units | GRAD.
N/1000 ft. | |--------|------------------|----------------|-----------------|------------|--------------------|---------------------| | 592.4 | 14157 | 5.25 | 34 | 180 | 859 | 0.00 | | 600.6 | 13813 | 0.94 | 43 | 184 | 847 | -12.54 | | 609.4 | 13448 | 0.36 | 53 | 190 | 835 | -14.97 | | 618.0 | 13096 | 0.70 | 61 | 195 | 823 | -14.51 | | 626.8 | 12739 | 1.31 | 63 | 198 | 810 | -9,71 | | 636.0 | 12371 | 1.95 | 64 | 202 | 796 | -9.35 | | 644.6 | 12030 | 2,79 | 66 | 206 | 783 | -11,84 | | 653.4 | 11685 | 3.88 | 63 | 208 | 769 | -6.71 | | 662.6 | 11329 | 4.91 | 61 | 211 | 754 | -6.48 | | 671.4 | 10992 | 5.82 | 55 | 211 | 739 | -2.75 | | 680.4 | 10651 | 6.83 | 51 | 213 | 724 | -4.59 | | 689.6 | 10306 | 7.87 | 49 | 215 | 710 | -6.00 | | 698.8 | 9964 | 8.87 | 48 | 218 | 697 | -9.04 | | 708,2 | 9619 | 9.63 | 54 | 225 | 687 | -19.08 | | 717.6 | 9278 | 10.17 | 46 | 223 | 669 | 4.68 | | 727.2 | 8933 | 10,96 | 28 | 216 | 645 | 21.54 | | 736.4 | 8606 | 11.71 | 28 | 219 | 632 | -8.30 | | 746.2 | 8261 | 12.47 | 28 | 221 | 618 | -7.33 | | 755.2 | 7948 | 13.28 | 27 | 223 | 605 | -6.93 | | 765.2 | 7603 | 14.07 | 27 | 226 | 591 | -8.53 | | 774.8 | 7276 | 14.88 | 26 | 229 | 578 | -7.48 | | 784.8 | 6938 | 15.49 | 28 | 233 | 566 | -13.41 | | 794.0 | 6631 | 16.04 | 27 | 235 | 554 | -6.34 | | 803.6 | 6313 | 16.79 | 21 | 233 | 536 | 6.00 | | 813.4 | 5992 | 16.96 | 25 | 239 | 526 | -16.89 | | 823.8 | 5654 | 16.80 | 40 | 255 | 526 | -46.71 | | 834,2 | 5320 | 16.56 | 64 | 277 | 532 | -67.16 | | 844.4 | 4995 | 16.57 | 71 | 286 | 525 | -26.08 | | 854.4 | 4680 | 17.05 | 75 | 293 | 518 | -24.63 | | 864.6 | 4362 | 17.47 | 79 | 300 | 510 | -21.49 | | 874.6 | 4053 | 17.93 | 80 | 306 | 500 | -17.93 | | 884.6 | 3747 | 18.61 | 77 | 308 | 487 | -5.90 | | 895.2 | 3425 | 19.43 | 73 | 309 | 473 | -3.70 | | 905,6 | 3113 | 20.28 | 67 | 308 | 458 | 0.86 | | 915.6 | 2815 | 21.20 | 68 | 315 | 450 | -20,21 | | 926.2 | 2502 | 21.76 | 69 | 321 | 441 | -19,50 | | 936.6 | 2198 | 22.35 | 66 | 322 | 427 | -4.15 | | 948.2 | 1862 | 23.06 | 66 | 327 | 416 | -14.95 | | 957.6 | 1592 | 23.92 | 65 | 332 | 408 | -18,23 | | 968.2 | 1290 | 24.70 | 62 | 334 | 396 | -6.18 | | 979,0 | 986 | 25.20 | 62 | 338 | 385
3 37 | -12,28 | | 989.4 | 6 9 5 | 25.88 | <u> 62</u> | 343 | 376 | -17.65 | | 1000.6 | 385
25 | 26.12 | 75
20 | 365 | 383
700 | -71.29 | | 1011.2 | 93 | 26.15 | 82 | 378 | 382 | -43.76 | | 1018.1 | -95 | 26.65 | 82 | 382 | 378 | -25,26 | NADC-79194-30 CAPE HATTERAS RAWINDSONDE:LAT.35des 16min N.LONG.75des 33min W LAUNCH DATE:09/08/78 LAUNCH TIME 11:00:00(EDT) SURFACE PRESSURE=1014.4 | PRESS. | ALTITUDE
feet | TEMP.
des.c | HUMIDITY
%rn | N
units | h
units | GRAD:
N/1000 ft. | |----------------|------------------|----------------|-----------------|------------|------------|---------------------| | 522.2 | 17268 | -7.20 | 32 | 159 | 988 | 0.00 | | 530.4 | 16885 | -6.80 | 57 | 166 | . 976 | -13.47 | | 538,4 | 16518 | -6.60 | 77 | 172 | 935 | -17,15 | | 546.6 | 16147 | -6.10 | 94 | 178 | 953 | -16,56 | | 555.0 | 15771 | -5.00 | 95 | 182 | 939 | -9.13 | | 563.4 | 15400 | -5.00 | 99 | 185 | 924 | -8.97 | | 571.8 | 15033 | -4.10 | 95 | 187 | 909 | -6.07 | | 580.4 | 14662 | -2,90 | 91 | 190 | 894 | -6+64 | | 588.8 | 14304 | -2.20 | 89 | 193 | 879 | -7.18 | | 597.4 | 13941 | -1,30 | 83 | 194 | 863 | -4,74 | | 606.2 | 13575 | -0.20 | 73 | 195 | 846 | -1.18 | | 614.8 | 13221 | 0.80 | 69 | 197 | 831 | -6,03
-3,35 | | 623.6 | 12863 | 1.50 | 64 | 198 | 815 | -8.69 | | 632.6 | 12501 | 3.40 | <u>62</u> | 201 | 801
704 | -4.11 | | 641.6 | 12143 | 4.30 | 57
57 | 203 | 783
770 | -4,23 | | 650.6 | 11789 | 5.10 | 53 | 204
207 | 756 | -8.11 | | 659.6 | 11439 | 6.30 | 52
=0 | 207 | 736
742 | -6.68 | | 658.8 | 11086 | 7.20 | 50
48 | 212 | 727 | -5.97 | | 677,8
407.0 | 10743 | 7,90
8,50 | 48 | 215 | 714 | -9.45 | | 687.0
696.6 | 10397
10040 | 9.30 | 52 | 220 | 702 | -14.99 | | 706.0 | 9694 | 9.50 | 49 | 221 | 687 | -2,88 | | 715.2 | 9359 | 10,40 | 47 | 223 | 673 | -6.59 | | 724.6 | 9021 | 12.40 | 42 | 225 | 658 | -4.80 | | 734.2 | 8679 | 13,30 | 34 | 223 | 640 | 6.13 | | 743.8 | 8340 | 14.30 | 31 | 224 | 624 | -3.21 | | 753.6 | 7998 | 15.10 | 23 | 221 | 605 | 9,98 | | 763.6 | 7653 | 15.40 | 17 | 219 | 586 | 4,49 | | 773.2 | 7325 | 16.20 | 18 | 222 | 574 | -8.97 | | 783.2 | 3987 | 16.80 | 18 | 225 | 560 | -7.81 | | 792.8 | 6665 | 17.70 | 17 | 227 | 547
530 | -6+06 | | 803.0 | 6327 | 17.80 | 15 | 228 | 532 | -3.24 | | 812.8 | 6006 | 18.20 | 14 | 230 | 518 | -6.08
-13.69 | | 822.8 | 5681 | 17.50 | 16 | 234 | 507
522 | -93.64 | | 833.0 | 5353 | 16.80 | 49
// | 265
283 | 325
325 | -55.96 | | 843.0 | 5034 | 17.10 | 66
71 | 203
291 | 517 | -24.39 | | 853.2 | 4713 | 17.50
18.20 | 71
73 | 298 | 508 | -21.24 | | 863.4 | 4394
4072 | 18.90 | 73
71 | 300 | 495 | -6.81 | | 873.8
884.2 | 3753 | 19.80 | 68 | 303 | 483 | -9.24 | | 894.0 | 3456 | 20.70 | 64 | 303 | 469 | -1,52 | | 904.6 | 3137 | 21.50 | 65 | 310 | 460 | -20.51 | | 915.0 | 2827 | 22,00 | 66 | 315 | 451 | -16.70 | | 925,6 | 2514 | 23,00 | 63 | 318 | 438 | -9,00 | | 936.4 | 2198 | 23.80 | 61 | 320 | 426 | -7.69 | | 947.0 | 1891 | 24.00 | 60 | 323 | 413 | -7,76 | | 958.0 | 1575 | 24.60 | చ0 | 327 | 403 | -14.72 | | 968 . 8 | 1268 | 25,40 | 59 | 332 | 393 | -16.87 | | 979.6 | 964 | 25.80 | 60 | 337 | 384 | -16.38 | | 990.6 | చ 5ేద | 26,20 | <u> </u> | 344 | 376 | -22.58 | | 1001.6 | 352 | 26.60 | 70 | 360 | 377 | -50.31
-14.44 | | 1014.4 | 0 | 29.90 | 61 | 365 | 365 | -14.49 | CAPE
WATTERAS RAWINDSONDE:LAT.35des 16min N/LCNG.75des 33min W LAUNCH DATE:09/08/78 LAUNCH TIME 13:00:00(EDT) SURFACE PRESSURE=1014.4 | FRESS. | ALTITUDE | TEMP | HUMIDITY | N | H | SAAC; | |--------|--------------|---------------|-------------------------|------------|--------------|--------------| | ALC | feet. | 00m.c | ve Till | unite | units | M/1000 Pt. | | | | 1000 MT. 100. | , | 4.2% | m.c.# | A AA | | 572.8 | 14990 | -3,80 | <u>87</u> | 186 | 90 5 | ••• <u>•</u> | | 581.4 | 14619 | -2,30 | 75 | 187 | \$8 8 | -1.03 | | 590.0 | 14253 | -1.50 | 68 | 188 | 872 | -3.32 | | 599.2 | 13866 | -0.50 | 64 | 190 | 856 | -5,38 | | 408,O | 13501 | 0.70 | 67 | 194 | 342 | -11,22 | | 617.0 | 13131 | 1.50 | 68 | 198 | 828 | -9,45 | | 626.0 | 12766 | 2.50 | 63 | 199 | 812 | -4.57 | | ى.55€ | 12405 | 3,20 | 59 | 201 | 796 | -4.09 | | 644.2 | 12040 | 4.10 | చర | 207 | 785 | -16.37 | | 653,4 | 11680 | 5.30 | | 206 | 766 | 2.57 | | 562,8 | 11316 | 6,00 | 54 | 209 | 752 | -7.73 | | 672.2 | 10956 | 7.40 | 51 | 211 | 737 | -6.40 | | 681,4 | 10607 | 7.90 | 45 | 211 | 720 | -0.82 | | 691,0 | 10248 | 9.40 | 39 | 212 | 704 | -1.30 | | 700.6 | 9892 | 9,30 | 48 | 219 | 694 | -20,30 | | 710.2 | 9341 | 10.30 | 46 | 222 | <u> </u> | -7.59 | | 719.8 | 9193 | 11.10 | 39 | 220 | <u> </u> | 3.49 | | 729.8 | 8842 | 11.80 | 19 | 211 | 635 | 27.23 | | 739.2 | 8502 | 13,00 | 18 | 213 | 621 | -6.67 | | 749.2 | 8151 | 14.00 | 17 | 215 | 606 | -5,70 | | 759.2 | 7804 | 15.00 | 17 | 218 | 592 | -6.69 | | 759.0 | 7468 | 15.20 | 18 | 221 | 579 | -10,11 | | 779.2 | 7122 | 16.00 | 17 | 223 | 565 | -5.69 | | 789.2 | 4785 | 16,40 | 17 | 226 | 551 | -7.98 | | 799.4 | 6446 | 17.50 | 16 | 228 | 537 | -5,60 | | 809.8 | 5104 | 17.70 | 13 | 228 | 521 | -1,55 | | 820,2 | 5765 | 16.20 | 17 | 234 | 511 | -17,18 | | 830,4 | 5436 | 16.50 | 62 | 274 | 535 | -121.74 | | 841.0 | 5098 | 16.50 | 61 | 276 | 521 | -6.86 | | 851,6 | 4763 | 17.20 | 70 | 288 | 517 | -35,45 | | 862.0 | 4437 | 17.40 | 61 | 284 | 497 | 12.85 | | 872,8 | 4103 | 18.40 | 76 | 303 | 500 | -57,06 | | | 3778 | 19.10 | 73
73 | 305 | 487 | -5.00 | | 883.4 | | 19.70 | 7 J
68 | 305 | 471 | -0,43 | | 894.2 | 3450
7440 | 21,30 | 61 | 305
305 | 455 | 0.07 | | 905.2 | 3119 | | | 311 | 445 | -16.48 | | 916.0 | 2798 | 21.70 | 62
73 | 314 | 433 | -10,42 | | 927.0 | 2473 | 22.10 | 62
=0 | | | -0.28 | | 938.0 | 2152 | 22.70 | 58 | 314 | 417 | -10.99 | | 949.2 | 1828 | 24.00 | ## ##
보고 ##
| 318 | 405 | | | 960.4 | 1507 | 24.70 | 33
= 7 | 320
320 | 392
701 | -7,25 | | 971.8 | 1183 | 25.60 | 53
5 | 324 | 381 | -13,39 | | 983.0 | 868 | 26.40 | 53 | 330 | <i>372</i> | -18.57 | | 994,4 | 551 | 26.90 | | 336 | 362 | -16.47 | | 1000.0 | 23 <u>0</u> | 29.00 | 38 | 353 | 364 | -54,55 | | 1014.4 | 0 | 32.00 | 45 | 350 | 350 | 13.44 | TABLE XXVI - METEOROLOGICAL DATA FROM CAPE HATTERAS RAWINDSONDE NO. 2 TABLE XXVII CAPE HATTERAS WIND INFORMATION FROM RAWINDSONDE NO. 1 (11:00:00 EDT) | Time Elapsed After Launch (min) | Altitude Above
Mean Sea Level
(ft) | Wind Speed
(kn) | Wind Direction (in ° relative to true North) | |---------------------------------|--|--------------------|--| | 0 | 13 | 6 | 40 | | | 935 | 4 | 68 | | 2 | 1838 | 2 | 55 | | 1
2
3
4 | 2648 | 6 | 360 | | 4 | 3419 | 10 | 346 | | 5 | 4381 | 13 | 342 | | 5
6
7
8 | 5143 | 17 | 346 | | 7 | 6066 | 19 | 340 | | ,
8 | 6933 | 20 | 338 | | 9 | 7897 . | 21 | 341 | | 10 | 8721 | 21 | 334 | | 11 | 9662 | 21 | 332 | | 12 | 10498 | 22 | 334 | | 13 | 11426 | 23 | 336 | | 14 | 12284 | 22 | 336 | | 15 | 13276 | 21 | 334 | | 16 | 14139 | 21 | 330 | | 17 | 15179 | 22 | 329 | | 18 | 16047 | 23 | 332 | | 19 | 16921 | 26 | 333 | | 20 | 17884 | 23 | 328 | | 21 | 18790 | 18 | 326 | | 22 | 19752 | 15 | 336 | | 23 | 20679 | 15 | 343 | | 24 | 21654 | 16 | 2 | | 25 | 22612 | 18 | 15 | | 26 | 23576 | 20 | 14 | | 27 | 24510 | 21 | 14 | TABLE XXVIII CAPE HATTERAS WIND INFORMATION FROM RAWINDSONDE NO. 2 (13:00:00 EDT) | Time Elapsed After Launch (min) | Altitude Above
Mean Sea Level
(ft) | Wind Speed
(kn) | Wind Direction
(in ° relative to
true North) | |---------------------------------|--|--------------------|--| | 0 | 13 | 5 | 60 | | | 1012 | 5
3 | 354 | | 1
2
3 | 1864 | 4 | 352 | | 3 | 2846 | 4
7 | 356 | | | 3826 | 8 | 353 | | 4
5
6 | 4763 | 10 | 345 | | 6 | 5741 | 14 | 341 | | .7 | 6614 | 15 | 343 | | 8 | 7514 | 17 | 343 | | 9 | 8328 | 19 | 339 | | 10 | 9312 | 22 | 337 | | 11 | 10212 | 24 | 335 | | 12 | 11208 | 25 | 333 | | 13 | 12137 | 24 | 332 | | 14 | 13088 | 24 | 336 | | 15 | 14046 | 26 | 335 | | 16 | 15030 | 25 | 325 | | 17 | 15998 | 25 | 324 | | 18 | 16993 | 26 | 331 | | 19 | 17900 | 25 | 333 | | 20 | 18985 | 17 | 327 | | 21 | 19904 | 11 | 332 | | 22 | 20960 | 10 | 6 | | 23 | 21887 | 9 | 14 | | 24 | 22843 | 9 | 5 | | 25 | 23840 | 10 | 32 | | 26 | 24845 | 13 | 46 | BENDIX F-3C CAPE H.: LAT. 35 des 09 min, LONG. 75 des 18 min LAUNCH DATE:09/08/78 LAUNCH TIME 13:02:18(EDT) SPLASH TIME 13:09:23(EDT) SURFACE PRESSURE(mb)=1014.6 SONDE NUMBER 15 | PRESS. | ALTITUDE
feet | TEMP:
des.c | HUMIDITY
%rh | N
units | M
units | GRAD.
N/1000 ft. | |----------------|------------------|----------------|-----------------|------------------------|--------------|---------------------| | 592.4 | 14157 | 3.03 | 38 | 181 | 860 | 0.00 | | 500+6 | 13813 | 0.56 | 45 | 185 | 848 | -12.38 | | 609,4 | 13448 | 0.40 | 59 | 192 | 837 | -18.62 | | 618.0 | 13096 | 0.96 | 61 | 195 | 824 | -9.67 | | 626.8 | 12739 | 1.50 | 63 | 199 | 810 | -9,38 | | 636+0 | 12371 | 2.18 | 66 | 203 | 797 | -11.38 | | 644.6 | 12030 | 3,13 | 66 | 206 | 784 | -9.80 | | 653.4 | 11685 | 4.18 | 62 | 208 | 769 | -4.92 | | 662.6 | 11329 | 5.18 | 60 | 210 | 754 | -6.99 | | 671.4 | 10992 | 6.18 | 55 | 211 | 739 | -3.21 | | 680.4 | 10651 | 7.14 | 50 | 213 | 724 | -3,90 | | 689.6 | 10306 | 8.28 | 48 | 215 | 710 | -7,16 | | 698.8 | 9964 | 9.03 | 48 | 218 | 696 | -8.20 | | 708.2 | 9619 | 9.93 | 51 | 223 | 685 | -14.56 | | 717.6 | 9278 | 10.58 | 31 | 215 | 660 | 24.50 | | 727.2 | 8933 | 11.23 | 28 | 216 | 645 | -2.74 | | 736.4 | 8606 | 12.06 | 28 | 218 | 632 | -8.18 | | 746.2 | 8261 | 12.85 | 27 | 221 | 618 | -7.76 | | 755.2 | 7948 | 13.52 | 26 | 223 | 605 | -6.38 | | 765.2 | 7603 | 14.11 | 27 | 227 | 591 | -9.61 | | 774.8 | 7276 | 15.07 | 27 | 229 | 578
= / 3 | -8.08
-12.97 | | 784.8 | 6938 | 15.54 | 28 | 234 | 567 | -0.20 | | 794.0 | 6631 | 16.27 | 25 | 234 | 552
537 | 0.30 | | 803.6 | 6313 | 16.96 | 22 | 234
239 | 526 | -16.41 | | 813.4 | 5992 | 17.05 | 25 | 264 | 535 | -73.96 | | 823.8 | 5654 | 16.85 | 51 | 20 4
279 | 535 | -46.10 | | 834.2 | 5320 | 16.54 | 67
70 | 285 | 525 | -18.23 | | 844.4 | 4995 | 16.66 | 70
78 | 296 | 521 | -33.96 | | 854.4 | 4680 | 17.16 | 79
79 | 301 | 510 | -16.38 | | 864+6 | 4362 | (29.91) | 82 | 364 | 558 | -202.64 | | 874.6 | 4053
3747 | 18.91 | 76 | 307 | 487 | 184.19 | | 884.6
895.2 | 3425 | 19.67 | 71 | 308 | 472 | -2,11 | | 890+4
905+6 | 3113 | 20.50 | 66 | 308 | 457 | 0.45 | | 915.6 | 2815 | 21.30 | 68 | 315 | 450 | -24.31 | | 926.2 | 2502 | 21.94 | 67 | 320 | 440 | -14.21 | | 720+2
936+6 | 2198 | 22.55 | 55 | 323 | 428 | -9.69 | | 948.2 | 1862 | 23,31 | 6 5 | 328 | 417 | -14.86 | | 957.6 | 1592 | 24.07 | 65 | 332 | 408 | -15,74 | | 757.0
968.2 | 1290 | 24.80 | 62 | 334 | 396 | -6.35 | | 979.0 | 986 | 25.36 | 62 | 338 | 386 | -14.87 | | 989.4 | 695 | 25,78 | 62 | 343 | 376 | -14.26 | | 1000.6 | 385 | 26.10 | 80 | 372 | 391 | -96.10 | | 1011.2 | 93 | 26.52 | 82 | 380 | 384 | -24.78 | TABLE XXIX - METEOROLOGICAL DATA FOR SONDE NO. 15 USING PERIOD DATA GENERATED BY BENDIX RDSRU IN P-3C AND NAVAIRDEVCEN ALGORITHMS | SURFACE PRESSURE=1012.4? | · | |---|-----------| | SURFACE PRESSURE=1012.4? E DATE TIME LAT. | LONG. | | 78:09:08 13:00Z 35:09:00N 075 | | | × . | | | ALT PRESSTEMP HUM | N | | | | | History 0: 1012.4 and 26.9 and 6 812 are | | | | | | | | | 17 1010.4 26.75 F 81 7-2 | | | 3.31111999.2625.9 all all 79bb | | | | | | 279 - 979.4cm 25.562.1. | | | 19 366 29691252-25.0 e 1 62.52 | | | | 338 | | 546 - 948.6~m-23.5 min 66min | 333 | | 634 938.6 - 6-22.7 child 66020 | : 328 i | | 725 928.421.9:5767 | 3231 | | 812 918:67 21.4 Mark 67 818 | : 319. · | | 18 4 901 2 2908 8 8 21.0 16 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 314 | | 991 899.0 19.6 http:// | 312 | | 1081 889:2 0:0 19:0 75:5 | 312 | | 1174 879.2 3 48.5 | • | | 1262 869.8~~±7.7.2.4.77% | | | 1355 860.070917.40 8/97 77 56 | | | 1446850.416.8 : 69% | | | 9 98 - 1537 9 841 9 9 m 16 . 8 t m 1 66 m t | | | attent 1630 . 831.4 at 17.1 at . 49 % | | | February 1723 has 822.0 as 17.2 has not 23 max | | | * 1820 - 812.2 - 17.2 49min | | | 30 1916 20 802.6 m 16.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | | | 50 pp 2191mg 775.6 mm 14.2 mm 26mm | | | | | | 2287. on 766. 4 to 13.8 To 15.24 to 2 | | | 2381757.4****13.0%::::::::::25## | | | 2478 748.22 12.4 | | | 2575 a la 739 . 244 a 11 . 4 a mala 27 lien | | | - 2672 d : 730.2 d : 10.6 d : 326 d | · | | 2770: 1.4721.29m:10.001am:51m1. | | | - 2867 (1471214±50-9.351-5146+11 | | | 2965.4703:68.647:47 | | | | | | - 3161:::: 686:2:: 6.3 54:: . | 217 9 | | | | | a., ,-3362 668.8-a., 4.4-4662.a | 214 / / 1 | | 3465 660.0 3.5 3.5 6665 | 212 | | | | 4 ``` 3567 65174 2.5 7 66 209 3668 643.0- 1.8 63 205 3767 634.8-x 1.1 - 61-x 201 . -- 3872----626-2d---- 0.6 ---- -- 59 197 -- 3971.... 618.2 -- 0.8 -- 7:45.... 191 27 FLAGGED GRADIENTS (STARTING: FROM SEALEVE): L) come al carto de circo come con tel manda come de la - 78:09:08 13:00Z 35:09:00N 075:18:00W 3 SUPERFRACTIVE: G=- 0.032 - TRAPPING: 5:5G=-.0.102:5:25:25:25:25:25 a Associations Associated and the second
SUPERFRACTIVE: G=-10.028 -- 110.021 a Arra 1174-lean Alba 1262 - referencia de final la colonia - SUPERFRACTIVE: G=+ 0.040- _ A - 1355-ingle-A & 1446 in a & anis to Ments 514 Sept Moder 517 residents tweether and the second TRAPPING: > G=- 0.056 - + + - - A 1-1537- Art. 1630 order after twice at 170 and 14 Mar. 526 - y Miss. 524 market Market 1997 12 mar. TRAPPING: G=+ 0.085 - SUBERACTIVE: G= 0.006 - STEEL COLOR A. 1820 - A-1916 - AVENCE - ---SUBFRACTIVE: G= 0.003-- cut-in our constant - A. 2575.5-7 A- 2672 - Cara-tarita - March 625 - A March 641 and the Parker . SUBFRACTIVE: G= 0.025 Access A 2672:25-7-Aug 2770 mm. //calebratics M. 641 Alexandre 664 Commission END OF GRADIENT DATA. ``` TABLE XXXI - REFRACTIVITY LAYER DATA OUTPUT FOR SONDE NO. 15 GENERATED BY BENDIX RDSRU IN LABORATORY | Ε | - NADC-79194-30 | | 7 | ٠ | |-------|--|------------|----------------|-----| | i | R TH'S PASSEM TIME | | | i | | | 7309 9088 17053 8770 | 0 . | | | | | 7297 - 9474 - 11344 8843 1 | 1 | | 1 | | | 7296 - 10201 . 7984 - 9078 . 5 | 1 | | | | | 7283 - 10532 8026 9474 . 14 | 3 | | 1 | | | 7280 10551 7967 11401 24 | 3 | | | | | 7276 10489 11238 11816 34 | 7 | | | | | 7286 5 10431 . 7959 5 12143 . 44 | 3 . | | | | 1 . | 7283 - 10355 - 7994 - 12927 54 | | | | | | .7285:102543 8218 - 12962 65 | | | | | | . 7284 - 10168 7967 ₂₆ - 11858 75 | | | | | 7 hai | 7297 10070 8902 11334 85 | | | | | | 7290 - 9991- 7969: + 10440 . 95 | | | | | | 7300 : 9900 : 7986 : 9852 : 105 | | | | | | 7296 9799 7977 9610 116 | | | | | | 7289 9733 7980 | | - | | | | 7289 9674 8976 | | = | | | | 7289 9630 7985 8952 147 | | • | | | | 7293 - 39576 - 7981 - 8825 - 157 | | - | - | | | .72979503v 7981 | | - | | | | 7294 | | 3°
- | | | | 7301 464 406 11267 2781 186 | | - | | | | 7290 - 9361 8036 - 8806 1 196 | | <i>:</i> | | | | 7294 | | - | | | | 7300 9306 7984 8853 215 | | | | | | _72879224_v 79818763 225
_7293991669151z8662 235 | | - | - | | | -72929166 7986 | | - | i | | | - 7296 9176 - 7975 - 9722 255 | | | i | | | 7294 949 9195 8079 9412464 265 | _ | | | | 1712 | 7293 25 2 1945 7 7968 2 13318 2 274 | 7 | | | | | 72919148. 941817698. 284 | | | | | | 7284 9121 8028 828 18253 294 | | - | | | | 7296 - 29090 8253 - 19456 304 | | | | | | 7291 - 9054 - 8414 - 16078 - 313 | | - | 1 | | | 7286 9008 7970 13460 328 | | | į | | | 7303 8948 8899 12123 338 | | <u>}</u> | | | | | | . - | | | 4.5 | . 7286 - 887 7 - 2. 8158 - 12464 358 | 23 | <u></u> | | | | 7281.e./st; 8830.45 -t; 8122 86 12094 368 | | | 1 | | | - 7290 <u>-</u> | | | 1 | | | . 7288::::/8750:: 9055-911820 | | | | | | 7290 - 8720 - 7963 - 11285 390 | | · 2 | 1/2 | | | | 37. | | 1 | | ż | -72898668 -:842611230416 | | | ļ | | | 72698651: 8284 18688 426 | | <i>2</i> : | | | | 7287 8629 8964 19874 429 | | :- | | | | 7286 8618 - 20564 20135 43 | L7 · | 7° , | _ | | | and the same of th | | | | TABLE XXXII - PERIOD DATA OUTPUT FOR SONDE NO. 15 GENERATED BY BENDIX RDSRU IN LABORATORY NADC-79194-30 TABLE XXXIII COMPARISON OF METEOROLOGICAL DATA GENERATED BY RDSRU IN LABORATORY WITH METEOROLOGICAL DATA GENERATED SOLELY BY NAVAIRDEVCEN PROCESSING SCHEME | NADC
Calculated
N Units | 190 | 195 | 198 | 202 | 206 | 208 | 211 | 211 | 213 | 215 | 218 | 225 | 223 | 216 | 1 | 219 | 221 | 223 | 226 | 229 | 233 | 235 | 233 | 239 | 255 | 277 | |--|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Bendix
RDSRU
Calculated
N Units | 185 | 191 | 197 | 201 | 205 | 209 | 212 | 214 | 216 | 21.7 | 217 | 220 | 222 | 228 | 220 | 219 | 223 | 223 | 225 | 230 | 232 | 236 | 236 | 234 | 241 | 267 | | NADC Calculated Humidity (%RH) | 53 | 61 | 63 | 99 | 99 | 63 | 61 | 55 | 51 | 64 | 87 | 54 | 97 | 28 | | 28 | 28 | 27 | 27 | 26 | 28 | 27 | 21 | 25 | 40 | 79 | | Bendix
RDSRU
Calculated
Humidity
(%RH) | 35 | 45 | 59 | . 61 | 63 | 99 | 99 | 62 | . 29 | 54 | 65 | 47 | 46 | 51 | 32 | 27 | 28 | 25 | 24 | 26 | 25 | 28 | 24 | 19 | 23 | 49 | | NADC Calculated Temperature (°C) | 0.36 | 0.70 | 1.31 | 1,95 | 2.79 | 3,88 | 4.91 | 5.82 | 6.83 | 7.87 | 8.87 | 9.63 | 10.17 | 10.96 | ļ | 11.71 | 12.47 | 13.28 | 14.07 | 14.88 | 15.49 | 16.04 | 16.79 | 16.96 | 16.80 | 16.56 | | Bendix RDSRU Calculated Temperature (°C) | 4.2 | 0.8 | 9.0 | 1.1 | 1.8 | 2.5 | 3,5 | 4.4 | 5.6 | 6.3 | 7.5 | 8.6 | 9,3 | 10.0 | 10.6 | 11.4 | 12.4 | 13.0 | 13.8 | 14.2 | 15.3 | 15.2 | 16.2 | • | 17.2 | 17.1 | | NADC
Calculated
Altitude
(ft) | 13448 | 13096 | 12739 | 12371 | 12030 | 11685 | 11329 | 10992 | 10651 | 10306 | 7966 | 9619 | 9278 | 8933 | } | 9098 | 8261 | 7948 | 7603 | 7276 | 6938 | 6631 | 6313 | 5992 | 5654 | 5320 | | Bendix RDSRU Calculated Altitude (ft) | 13373 | 13029 | 12704 | 12360 | 12035 | 11703 | 11369 | 11031 | 10696 | 10371 | 10053 | 9728 | 9407 | 8806 | 8767 | 8449 | 8130 | 7812 | 7504 | 7189 | 6877 | 6578 | 6286 | 5971 | 5653 | 5348 | Sonde Number 15 TABLE XXXIII (cont) | NADC
Calculated
N Units | 286
293 | 306
306
308 | 308
308 | 315 | 1 1 | 322
327 | 332
334 | 338 | 365 | 378 | 382 | |--|----------------------|-------------------|----------------|--------------|-------|----------------|----------------|----------------|-------|-------|-------| | Bendix
RDSRU
Calculated
N Units | 284 289 | 304
312 | 312 | 314 | 323 | 328
333 | 338
339 | 343 | 375 | 385 | 386 | | NADC
Calculated
Humidity
(%RH) | 71
75
70 | 80
77 | 73 | 89 | 3 ; | 99
99 | 65
62 | 62 | 75 | 82 | 82 | | Bendix
RDSRU
Calculated
Humidity
(%RH) | 99
69
77 | 77 | 75 | 99 | 67 | 99 | 65
62 | 62 | 79 | 81 | 81 | | NADC Calculated Temperature (°C) | 16.57 17.05 | 17.93 | 19.43
20.28 | 21.20 | | 22.35
23.06 | 23.92
24.70 | 25.20
25.88 | 26.12 | 26.15 | 26.65 | | Bendix RDSRU Calculated Temperature (°C) | | 17.7 | 19.0
19.6 | 21.0 | 21.9 | 22.7
23.5 | 24.3
. 25.0 | 25.5 | 25.9 | 26.7 | 26.9 | | NADC
Calculated
Altitude
(ft) | 4995
4680
7362 | 4053 | 3425
3113 | 2815
2502 | | $2198 \\ 1862$ | 1592
1290 | 986 | 385 | 93 | -95 | | Bendix
RDSRU
Calculated
Altitude
(ft) | 5043
4744
444 | 4141 | 3547
3251 | 2956
2664 | 2379 | $2080 \\ 1791$ | 1493
1201 | 915 | 364 | 26 | 0 | Sonde Number 15 BENDIX LAB. CAPE H.: LAT. 35 des 09 min, LONG. 75 des 18 min LAUNCH DATE:09/08/78 LAUNCH TIME 13:02:18(EDT) SPLASH TIME 13:09:23(EDT) SURFACE PRESSURE(mb)=1014.6 SONDE NUMBER 15 | PREBS. | ALTITUDE
feet | TEMP.
des.c | HUMIDITY
%rh | N
units | M
units | GRAD.
N/1000 ft. | |----------------|------------------|----------------|-----------------|--------------------|-------------|---------------------| | 592,4 | 14157 | 3.95 | 35 | 180 | 860 | 0,00 | | 600.6 | 13813 | 0.55 | 45 | 185 | 848 | -14,03 | | 600·4 | 13448 | 0,33 | 59 | 192 | 837 | -18.45 | | 618.0 | 13096 | 0.85 | 61 | 195 | 824 | -9.60 | | 626.8 | 12739 | 1,53 | 63 | 199 | 810 | -9.57 | | 636.0 | 12371 | 2.23 | 66 | 203 | 797 | -11.49 | | 644.6 | 12030 | 3,26 | 66 | 206 | 784 | -10.02 | | 653.4 | 11685 | 4.12 | 62 | 208 | 769 | -4,45 | | 662.6 | 11329 | 5.35 | 60 | 210 | 754 | -7.43 | | 671.4 | 10992 | 6.11 | 55 | 211 | 739 | -2.66 | | ±80.4 | 10651 | 7,30 | 50 | 213 | 724 | -4,27 | | 689.6 | 10306 | 8.42 | 48 | 215 | 710 | -7.16 | | 698.8 | 9964 | 9.10 | 48 | 218 | 696 | -8.30 | | 708.2 | 9619 | 9.83 | 52 | 224 | 685 | -15,48 | | 717.6 | 9278 | 10.39 | 32 | 215 | <u>6</u> 61 | 24.14 | | 727.2 | 8933 | 11.16 | 28 | 216 | 644 | -0.67 | | 736.4 | 8606 | 12.20 | 28 | 219 | 632 | -9.34 | | 746.2 | 8261 | 12.81 | 27 | 221 | 617 | -5.96 | | 755.2 | 7948 | 13.61 | 26 | 223 | 604 | -5.96 | | 765.2 | 7603 | 14.05 | 27 | 226 | 591 | -11 + 14 | |
774.8 | 7276 | 15.13 | 26 | 229 | 578 | -7.98 | | 784.8 | 6938 | 15.04 | 28 | 233 | 566 | -11,83 | | 794.0 | 6631 | 16.02 | 25 | 234 | 552 | -2.37 | | 803.6 | 6313 | 17.04 | 21 | 233 | 536 | 2,35 | | 813.4 | 5992 | 17.02 | 25 | 239 | 526 | -17.81
-72.24 | | 823.8 | 5654 | 16.94 | 50 | 263 | 535 | -72,24
-48,16 | | 834.2 | 5320 | 16.60 | 67 | 279 | 535 | -17,26 | | 844.4 | 4995 | 16.60 | 70 | 285
207 | 525
521 | -35,77 | | 854.4 | 4680 | 17.28 | 78
78 | 296
7 01 | 510 | -13.55 | | 864.6 | 4362 | 17.57 | 79
80 | 301
307 | 502 | -21.08 | | 874.6 | 4053 | 18.32 | 76 | 307 | 487 | 0.35 | | 884,6 | 3747 | 18.81 | 71 | 308 | 472 | -1.58 | | 895.2 | 3425
7417 | 19.48
20.89 | 66
65 | 309 | 458 | -4,40 | | 905.6 | 3113
2815 | 21.30 | 68 | 315 | 450 | -21.02 | | 915.6 | 2502 | 21.30 | 68 | 319 | 439 | -12.64 | | 926.2 | 2198 | 22,55 | 66
66 | 323 | 428 | -11.33 | | 936+6 | 1862 | 23.36 | 65 | 328 | 417 | -14.97 | | 948.2
957.6 | 1592 | 24.24 | 65 | 333 | 409 | -17.97 | | 957.0
968.2 | 1290 | 24.88 | 62 | 334 | 396 | -4,60 | | 979.0 | 986 | 25,39 | 62 | 339 | 383 | -15.07 | | 989.4 | 495 | 25.92 | 62 | 343 | 376 | -14,95 | | 1000,6 | 385 | 25.78 | 80 | 371 | 389 | -89.59 | | 1011.2 | 93 | 26.68 | 82 | 380 | 385 | -33.26 | | | | | | | | | TABLE XXXIV - METEOROLOGICAL DATA FOR SONDE NO. 15 USING BENDIX RDSRU LABORATORY GENERATED PERIOD DATA AND NAVAIRDEVCEN ALGORITHMS ### APPENDIX A ### SUMMARY OF USER ALGORITHMS The algorithms listed in this section of the report were used by the Tektronics 4051 microcomputer, as part of the NAVAIRDEVCEN processing scheme, to calculate the required meteorological data. ### A.1 Altitude The altitude equation listed below was derived from a tropospheric pressure-altitude equation given in appendix 8.0.1 of reference (c). $$A_{i} = (-145445)$$ $\frac{1013.246}{P_{i}}$ $\frac{-0.190263}{P_{s}}$ $\frac{1013.246}{P_{s}}$ $\frac{-0.190263}{(A-1)}$ where A, = Pressure altitude (in feet) P_i = Pressure (in millibars) at altitude A_i P_s = Surface pressure (in millibars) 1013.246 = Standard sea level barometric pressure (in millibars) ### A.2 Temperature Two steps are required in the calculation of free air temperature from the telemetered frequency: (1) conversion of the frequency, as developed by the sonde oscillator, to thermistor resistance, and (2) conversion of this resistance value to temperature. It should be noted that the thermistor element itself is directly coupled to the sonde's oscillator. The following general equation for sensor resistance and sensor frequency was derived by Mr. Sal Grillo of NAVAIRDEVCEN. This equation was formulated by means of a curve-fitting technique of data compiled from the characteristics of oscillators that were incorporated into the dropsonde. $$F_{SEN} = \frac{90664.788 F_{HR}}{1719.807 (R_{SEN} + 47.718)}$$ (A-2) where F_{SEN} = Sensor frequency R_{SEN} = Sensor resistance F_{HR} = High reference frequency The equation for thermistor resistance appears below (see page 3-1 of reference (d)) and can be derived from equation (A-2) by elementary algebraic manipulation. In the data calculations presented previously in this report, the equations that use period values were utilized rather than frequency values. However, either method is valid. Thermistor Resistance: $$R_{T} = \frac{52.718 \text{ F}_{HR}}{F_{T}} - 47.718$$ (A-3) or $$R_{T} = \frac{52.718 P_{T}}{P_{HR}} -47.718$$ (A-4) where $R_{\overline{T}}$ = Thermistor resistance (in ohms) F_{HR} = High reference frequency $F_{_{\rm T\!\!T}}$ = Thermistor frequency $P_{\overline{T}} = \frac{1}{F_{\overline{T}}} = Thermistor period$ $P_{HR} = \frac{1}{F_{HR}} = Period of the high reference frequency$ The ensuing third order polynomial equation, derived empirically by the VIZ Manufacturing Company from test data for its premium temperature sensors (see reference (e)), page 55), converts thermistor resistance to temperature and provides accuracies within ±0.01° C to nominal sensor test data. Temperature: $$T = \frac{1}{3} \frac{R_T}{\kappa = 0} = \frac{1}{R_{30}} = \frac{R_T}{R_{30}} = \frac{1}{R_{30}}$$ (A-5) where T = Free-air temperature (in ° C) $R_{_{\rm T\!P}}$ = Thermistor resistance R_{30} = Thermistor lock-in resistance at +30° C $A_0 = 3.2987 E-\emptyset3$ $A_1 = 4.7764 E - \emptyset 4$ $A_2 = 3.0029 E - \emptyset 6$ $A_3 = 1.5108 E - \emptyset 6$ ### A.3 Humidity There are two steps in the calculation of relative humidity from the telemetered frequency: conversion of the frequency to hygristor resistance and conversion of this resistance value to relative humidity. The calculation of the hygristor resistance is also a two-step process and begins with the basic sensor resistance equation that was stated previously. $$R_{H} = \frac{52.718 F_{HR}}{F_{U}} - 47.718$$ (A-6) or $$R_{H} = \frac{52.718 P_{H}}{P_{HR}} - 47.718$$ (A-7) where $\mathbf{R}_{\mathbf{H}}^{}$ = Resistance of the hygristor resistor network F_{HR} = High reference frequency F_{H} = Hygristor frequency $$P_{H} = \frac{1}{F_{H}} = Hygristor period$$ $P_{HR} = \frac{1}{F_{HR}} = Period of high reference frequency$ The actual total hygristor resistance is derived by determining the total resistance of the resistor network containing the hygristor, which appears in figure 51. The equation for this resistance network is: $$R_{\rm H} = \frac{250 R_{\rm h}}{250 + R_{\rm h}} + 7.1 \tag{A-8}$$ and can be converted, via algebraic manipulation, to the following final form for actual hygristor resistance: Actual Hygristor Resistance: $$R_{h} = \frac{250 (R_{H} - 7.1)}{250 - (R_{H} - 7.1)}$$ (A-9) where $R_{\rm h}$ = Actual hygristor resistance (in kohms) and $$R_{\rm H} = \frac{52.718 P_{\rm H}}{P_{\rm HR}}$$ - 47.718, as defined before. The expressions for calculating the relative humidity were also developed at NAVAIRDEVCEN and are dependent on the free-air temperature and on the ratio of hygristor resistance to the hygristor lock-in resistance. The final equation for calculating relative humidity is given as follows: Relative Humidity: $$H_R = H_1 + \frac{T}{40} (H_2 - H_1)$$ (A-10) where H_{R} = Percent relative humidity T = Free-air temperature at that particular altitude The variables H_1 and H_2 are determined by the following constraints: Let $$r = \frac{R_h}{R_{LH}}$$ where R_h = Actual hygristor resistance $R_{\mathrm{T,H}}$ = Hygristor lock-in resistance at 33% RH and +25° C If $r \le 1.46$, then $H_1 = 32.0964 + 38.944 \, ln \, r$ If 1.46 < r \leq 6.2, then H₁ = 40.5085 + 16.6907 ln r If r > 6.2, then $H_1 = 54.8495 + 9.0138 \, ln \, r$ If T \leq 0 and r \leq 1.4, then H₂ = 32.5091 + 36.6271 \ln r If $$T \le 0$$ and 1.4 < $r \le 3.8$, then $H_2 = 36.372 + 16.4646 \ln r$ If T $$\leq$$ 0 and r > 3.8, then H₂ = 47.2683 + 9.7881 ln r If T > 0 and r $$\leq$$ 1.2, then H₂ = 32.4162 + 50.2485 \ln r If T > 0 and 1.2 < r $$\leq$$ 5.0, then H₂ = 42.6859 +20.0476 \ln r If T > 0 and 5.0 < r $$\leq$$ 40.0, then H₂ = 54.6334 + 11.042 ln r If $$T > 0$$ and $r > 40.0$, then $H_2 = 78.9251 + 4.3577 \, \text{ln } r$ ### A.4 Refractivity: N and M Units The following equations that were used for the refractivity index (in both N and M units) were taken from pages 3-8 and 3-10 of reference (d). Refractivity: $$N = \frac{77.6 \text{ P} - 0.056 \text{ H}_{R}^{e}\text{s}}{T + 273.16} + \frac{3750 \text{ H}_{R}^{e}\text{s}}{(T + 273.16)^{2}}$$ (A-11) where N = Refractivity index (in N-units) P = Barometric pressure (in mbars) T = Free-air temperature at pressure P (in °C) H_{R} = Percent relative humidity at pressure P e = Saturated water vapor pressure (in mbars) The saturated water vapor pressure is calculated according to the following equation: Saturated Water Vapor Pressure: $$e_{s} = \frac{1013.246 \times 10^{8.1238 \times 10^{-3}} [10^{-3.49149} (\frac{1-t}{t})_{-1}]}{t^{5.02808} \times 10^{7.90298} (\frac{1-t}{t})_{x} \times 10^{1.3816 \times 10^{-7}} [10^{11.344} (1-t)_{-1}]}$$ (A-12) where $$t = \frac{T + 273.16}{373.16}$$ T = Free-air temperature (in ° C) Refractivity in M-units can be determined by the following expression: Refractivity: M = N + 0.048 A (A-13) where M = Refractivity (in M-units) N = Refractivity (in N-units) A - Pressure Altitude (in feet) The refractivity gradient, $\frac{dN}{dA}$, is calculated for every 1000 feet of altitude as follows: Refractivity Gradient: $$\frac{dN}{dA} = \frac{N_i - N_{i-1}}{A_i - A_{i-1}} \times 1000$$ (A-14) where $\frac{dN}{dA}$ = Refractivity gradient/1000 ft N_i = Refractivity at current altitude A_i N_{i-1} = Refractivity at previous altitude A_{i-1} A_{i} and A_{i-1} are altitudes in feet $A_{i} < A_{i-1}$ The refractivity gradient, $\frac{dN}{dA}$, is classified according to the following constraints: Range Classification $\frac{dN}{dA} < -48.0$ Trapping $-48.0 \le \frac{dN}{dA} < -24.0$ Superfractive $-24.0 \le \frac{\mathrm{dN}}{\mathrm{dA}} < 0$ Normal $0\, \leq \frac{dN}{dA}$ Subfractive